Skip to main content

Advertisement

Log in

Channel CO2 in feldspathoids: New data and new perspectives

  • Published:
RENDICONTI LINCEI Aims and scope Submit manuscript

Abstract

The study of volatile constituents in minerals has potential applications ranging from environmental studies to ore research to volcanic hazards. In this paper we present new data on the volatile (particularly CO2) content of a series of feldspathoids belonging to the cancrinite-sodalite group of minerals, in combination with other data collected over the last few years. The work has been essentially done using FTIR microspectroscopy to detect and characterize the speciation of H and C in the micropores of these minerals. We show that most cancrinite-sodalite group of minerals are able to trap CO2 in their structure in addition to other molecular and anionic species such as H2O, OH, F, Cl, SO4, SO3 etc. A combination of in situ and annealing heat-treatments shows that the different species in the cancrinite-sodalite group release CO2 at different temperatures, due to the different connectivity of their pores. Detailed FTIR microspectrometry mappings typically show non-homogeneous distributions of hydrogen and carbon across the samples, and suggest a possible use of these minerals as a tool for geothermometric modelling. The finding that most cancrinite-sodalite group minerals are able to trap carbon dioxide opens a new frontier in the design of materials having potential for carbon sequestration from the atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aines RD, Rossman GR (1984) The high temperature behaviour of water and carbon dioxide in cordierite and beryl. Am. Mineral. 69: 319–327

    CAS  Google Scholar 

  2. Armbruster Th, Bloss FD (1980) Channel CO2 in cordierite. Nature 286: 140–141

    Article  CAS  Google Scholar 

  3. Ballirano P, Bonaccorsi E, Merlino S, Maras A (1998) Carbonate groups in davyne: structural and crystal-chemical considerations. Can. Mineral. 36: 1285–1292

    CAS  Google Scholar 

  4. Ballirano P, Maras A, Buseck PR (1996) Crystal chemistry and IR spectroscopy of Cl and SO 4 bearing cancrinite-like minerals. Am. Mineral. 81: 1003–1012

    CAS  Google Scholar 

  5. Bonaccorsi E, Comodi P, Merlino S (1995) Thermal behavior of davyne-group minerals. Phys. Chem. Minerals 22: 367–374

    Article  CAS  Google Scholar 

  6. Bonaccorsi E, Della Ventura G, Bellatreccia F, Merlino S (2007) The thermal behaviour and dehydration of pitiglianoite, a mineral of the cancrinite group. Microporous Mesoporous Mater. 99: 225–235

    Article  CAS  Google Scholar 

  7. Bonaccorsi E, Merlino S (2005) Modular microporous minerals: cancrinite-davyne group and C-S-H phases. In: Ferraris G, Merlino S (eds), Micro-and Mesoporous Mineral Phases. Reviews in Mineralogy and Geochemistry, Mineralogical Society of America 57: 241–290

  8. Bonaccorsi E, Orlandi P (1996). Second occurrence of pitiglianoite, a mineral of the cancrinite-group. Atti Soc. Tosc. Sc. Nat., s. A. 103: 193–195

    Google Scholar 

  9. Brewer PG, Friederich GE, Peltzer ET, Orr FM Jr. (1999) Direct experiments on the ocean disposal of fossil fuel CO2. Science 284: 943–945

    Article  CAS  Google Scholar 

  10. Cámara F, Bellatreccia F, Della Ventura G, Mottana A (2005) Farneseite, a new mineral of the cancrinite-sodalite group with a 14 layer stacking sequence: occurrence and crystal structure. Eur. J. Mineral. 17: 839–846

    Article  Google Scholar 

  11. CestelliGuidi M, Piccinini M, Marcelli A, Nucara A, Calvani P, Burattini E (2005) Optical performances of SINBAD, the Synchrotron INfrared Beamline At Dafne. J. Opt. Soc.Am. A 22: 2810–2817

    Article  Google Scholar 

  12. Deer WA, Howie RA, Wise WS, Zussman J (2004) Framework Silicates: Silica Minerals, Feldspathoids and the Zeolites. Geological Society, London

    Google Scholar 

  13. Della Ventura G, Bellatreccia F (2004) The channel constituents of cancrinite-group minerals. Micro-and Mesoporous Mineral Phases (Accademia Nazionale dei Lincei, Rome, December 6–7, 2004) Pre-Prints: 75–76

  14. Della Ventura G, Bellatreccia F, Bonaccorsi E (2005) CO2 in minerals of the cancrinitesodalite group: pitiglianoite. Eur. J. Mineral. 17: 843–851

    Article  Google Scholar 

  15. Della Ventura G, Bellatreccia F, Cámara F, Oberti R, Lorand J-P, Parodi GC, Carlier G, Di Domenico D (2006) Carbon-bearing cordierite from Allumiere (Tolfa volcanic center, Latium, Italy): Occurrence, crystal-structure and FTIR microspectroscopy. Per. Mineral. 75: 113–126

    Google Scholar 

  16. Della Ventura G, Bellatreccia F, Parodi GC, Cámara F, Piccinini M (2007) Single-crystal FTIR and X-ray study of vishnevite, ideally [Na6(SO4)][Na2(H2O)2](Si6Al6O24). Am. Mineral. 92: 713–721

    Article  Google Scholar 

  17. Elliot S, Lackner KS, Dubey MK, Hanson HP, Barr S (2001) Compensation of atmospheric CO2 buildup through engineered chemical sinkage. Geophys. Res. Lett. 28: 1235–1238

    Article  Google Scholar 

  18. Galitskii VYu, Grechushnikov BN, Sokolov YuA (1978) Form of water in cancrinite. Russ. J. Inorg. Chem. 23: 1749–1750

    Google Scholar 

  19. Gesing M, Buhl J-Ch (2000) Structure and spectroscopic properties of hydrogencarbonate containing alumosilicate sodalite and cancrinite. Z. Kristallogr. 215: 413–418

    Article  CAS  Google Scholar 

  20. Hassan I, Grundy HD (1991) The crystal structure of haüyne at 293 and 153 K. Can. Mineral. 29: 123–130

    CAS  Google Scholar 

  21. Ihinger PD, Hervig RL, McMillan PF (1994) Analytical methods for volatile in glasses. In: Carroll MR, Holloway JR (eds), Volatiles in Magmas. Mineralogical Society of America, Reviews in Mineralogy, 30: 67–121

  22. Johannes W, Schreyer W (1981) Experimental introduction of CO2 and H2O into Mg-cordierite. Am. J. Sci. 281: 299–317

    CAS  Google Scholar 

  23. Khomenko VM, Langer K (2005) Carbon oxides in cordierite channels: determination of CO2 isotopic species and CO by single crystal IR spectroscopy. Am. Mineral. 90: 1913–1917

    Article  CAS  Google Scholar 

  24. King PL, Vennemann TW, Holloway JR, Hervig RL, Lowenstern JB, Forneris JF (2002) Analytical techniques for volatiles: a case study using intermediate (andesitic) glasses. Am. Mineral. 87: 1077–1089

    CAS  Google Scholar 

  25. Kolesov BA, Geiger CA (2003) Molecules in the SiO2-clathrate melanophlogite: a single-crystal Raman study. Am. Mineral. 88: 1364–1368

    CAS  Google Scholar 

  26. Lackner KS, Wendt CH, Butt DP, Joyce EL, Sharp DH (1995) Carbon dioxide disposal in carbonate minerals. Energy 20: 1153–1170

    Article  CAS  Google Scholar 

  27. Mandarino JA, Back ME (2004) Fleischer’s glossary of mineral species. Mineralogical Record Inc., Tucson

    Google Scholar 

  28. Maurin G, Llewellyn PL, Bell RG (2005). Adsorption mechanism of carbon dioxide in faujasite: grand canonical Monte Carlo simulations and microcalorimetry measurements. J. Phys. Chem. B. 109: 16084–16091

    Article  CAS  Google Scholar 

  29. McCusker LB, Liebau F, Engelhardt G (2001) Nomenclature of structural and compositional characteristics of ordered microporous and mesoporous materials with inorganic hosts (IUPAC Reccomandations 2001). Pure Appl. Chem. 73: 381–394

    Article  CAS  Google Scholar 

  30. McMullan RK, Ghose S, Haga N, Schomaker V (1996) Sodalite, Na4Si3Al3O12Cl: structure and ionic mobility at high temperature by neutron diffraction. Acta Crystallogr. B52: 616–627

    CAS  Google Scholar 

  31. Merlino S, Mellini M, Bonaccorsi E, Pasero M, Leoni L, Orlandi P (1991) Pitiglianoite, a new feldspathoid from southern Tuscany, Italy: Chemical composition and crystal structure. Am. Mineral. 76: 2003–2008

    CAS  Google Scholar 

  32. O’Connor WK, Dahlin DC, Turner PC, Walters RP (2000) Carbon dioxide sequestration by ex-situ mineral carbonation. Technology, 7: 115–123

    Google Scholar 

  33. Rinaldi R (1982) More stacking variations in cancrinite-related minerals; how many more new minerals?. J. Microsc. Spectrosc. Electron. 7: 76a–77a

    Google Scholar 

  34. Rinaldi R, Wenk HR (1979) Stacking variations in cancrinite minerals. Acta Crystallogr. A35: 825–828

    CAS  Google Scholar 

  35. Rouquerol J, Avnir D, Fairbridge CW, Everett DH, Haynes JH, Pernicone N, Ramsay JD, Sing KSW., Unger KK (1994) IUPAC “Recommendations for the Characterization of Porous Solids”. Pure Appl. Chem. 66: 1739–1758

    Article  CAS  Google Scholar 

  36. Sing KSW, Williams RT(2004) Review: the use of molecular probes for the characterization of nanoporous adsorbents. Part. Syst. Charact. 21: 71–79

    Article  CAS  Google Scholar 

  37. Taylor D (1967) The sodalite group of minerals. Contrib. Mineral. Petrol. 16: 172–188

    Article  CAS  Google Scholar 

  38. Van Peteghem JK, Burley BJ (1963) Studies on solid solution between sodalite, nosean and haüyne. Can. Mineral. 7: 808–813

    Google Scholar 

  39. Wood DL, Nassau K (1967) Infrared spectra of foreign molecules in beryl. J. Chem. Phys. 47: 2220–2228

    Article  CAS  Google Scholar 

  40. Zhang M, Wang L, Hirai S, Redfern SAT, Salje EKD (2005) Dehydroxylation and CO2 incorporation in annealed mica (sericite): an infrared spectroscopic study. Am. Mineral. 87: 90, 173–180

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giancarlo Della Ventura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Della Ventura, G., Bellatreccia, F. & Piccinini, M. Channel CO2 in feldspathoids: New data and new perspectives. Rend. Fis. Acc. Lincei 19, 141–159 (2008). https://doi.org/10.1007/s12210-008-0008-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12210-008-0008-6

Keywords

Subject codes

Navigation