Skip to main content
Log in

Morphotectonic characterization of the quaternary intermontane basins of the Umbria-Marche Apennines (Italy)

  • Intermontane basins in central-southern Italy
  • Published:
Rendiconti Lincei Aims and scope Submit manuscript

Abstract

In the axial zone of the Umbria-Marche Apennines, several fault-bounded intermontane basins (i.e., Colfiorito, Norcia, Castelluccio and Leonessa) were generated at the end of Lower Pleistocene. The analysis of the master fault of the basins, the relicts of planation surfaces and the drainage network arrangements, allowed us the improvement of knowledge on the Pleistocene morphotectonic evolution of those basins. Morphometry and geostatistics of the topography have been performed to obtain indexes suitable for assessing the role of faults displacements on the landscape development. Furthermore, a gravimetric analysis realized along some basins has furnished new data on their sedimentary infill. The basins are filled by Pleistocene to Holocene fluvial-lacustrine coarse-grained deposits, and the bedrock consists of Jurassic to Miocene limestone and marls belonging to the Umbria-Marche succession. Several historical and instrumental highly destructive earthquakes occurred in this area: January 14, 1703 (X MCS, M = 6.6); September 19, 1979 (Ms = 5.9, focal depth of 6–8 km); September 26, 1997 (Mw = 6.0, focal depth of 6–8 km). Faults and earthquake focal mechanisms are compatible with a predominant NE–SW extension, but strike-slip and reverse mechanisms have been also documented. The fault activity appears to have had a predominant role in controlling the sedimentation processes inside the intermontane basins, as well as in controlling their Pliocene to Quaternary evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Ambrosetti P, Carraro F, Deiana G, Dramis F (1982) Il sollevamento dell’Italia centrale tra il Pleistocene inferiore e il Pleistocene medio. Contributi Conclusivi per la Realizzazione della Carta Neotettonica d’Italia, CNR-PFG pubbl., vol 513, pp 219–223

  • APAT (2005) Italy 1:1.250.000 Bouguer Anomaly Map

  • Aringoli D, Gentili B, Materazzi M, Pambianchi G (2010a) Deep-seated gravitational slope deformations in active tectonics areas of the Umbria-Marche Apennine (Central Italy). Geogr Fis Dinam Quat 33:127–140

    Google Scholar 

  • Aringoli D, Gentili B, Materazzi M, Pambianchi G (2010b) Mass movements in the Adriatic Central Italy: activation and evolutive control factors. In: Werner ED, Friedman HP (eds) Landslides: causes, types and effects. Nova Science Publishers Inc., New York, pp 1–71

    Google Scholar 

  • Bartolini C (1980) Su alcune superfici sommitali dell’Appenino Settentrionale. Geogr Fis Dinam Quat 3:42–60

    Google Scholar 

  • Bull WB (2007) Tectonic geomorphology of mountains: a new approach to paleoseismology. Blackwell Publishing, Oxford

    Book  Google Scholar 

  • Burbank DW (1992) Characteristic size of relief. Nature 359:483–484

    Article  Google Scholar 

  • Burbank DW, Anderson RS (2012) Tectonic Geomorphology, 2nd edn. Wiley-Blackwell, New York

    Google Scholar 

  • Calamita F, Coltorti M, Deiana G, Dramis F, Pambianchi G (1982) Neotectonic evolution and geomorphology of the Cascia and Norcia depressions (Umbria-Marche Apennine). Geogr Fis Dinam Quat 5:263–276

    Google Scholar 

  • Calamita F, Satolli S, Scisciani V, Esestime P, Pace P (2010) Contrasting styles of fault reactivation in curved orogenic belts: examples from the Central Apennines (Italy). Geol Soc Am Bull 123:5–6

    Google Scholar 

  • Cello G, Mazzoli S, Tondi E, Turco E (1997) Active tectonics in the central Apennines and possible implications for seismic hazard analysis in peninsular Italy. Tectonophysics 272:43–68

    Article  Google Scholar 

  • Centamore E, Deiana G (1986) La Geologia delle Marche. Studi Geologici Camerti, spec vol, p 145

  • Ciccacci S, D’Alessandro L, Dramis F, Fredi P, Pambianchi G (1985) Geomorphological and neotectonic evolution of the Umbria-Marche ridge, northern sector. Studi Geol Camerti 10:7–15

    Google Scholar 

  • Coltorti M, Farabollini P (1995) Quaternary evolution of the Castelluccio di Norcia Basin (Umbro-Marchean Apennine, Central Italy). Il Quat 8(1):149–166

    Google Scholar 

  • Coltorti M, Pieruccini P (2000) A late Lower Pliocene planation surface across the Italian Peninsula: a key toll in neotectonic studies. J Geodyn 29(3–5):323–328

    Article  Google Scholar 

  • Coltorti M, Farabollini P, Gentili B, Pambianchi G (1996) Geomorphological evidence for anti-Appenine faults in the Umbro-Marchean Apennines and in the peri-Adriatic basin, Italy. Geomorphology 15:33–45

    Article  Google Scholar 

  • Cressie NAC (1990) The origins of Kriging. Math Geol 22:239–252

    Article  Google Scholar 

  • Deiana G, Pialli P (1994) The structural provinces of the Umbro-Marchean Apennines. Mem Soc Geol Ital 48:473–484

    Google Scholar 

  • Delcaillau B, Amrhar M, Namous M, Laville E, Pedoja K, Dugué O (2011) Transpressional tectonics in the Marrakech High Atlas: insight by the geomorphic evolution of drainage basins. Geomorphology 134:344–362

    Article  Google Scholar 

  • Della Seta M, Del Monte M, Fredi P, Miccadei E, Nesci O, Pambianchi G, Piacentini T, Troiani F (2008) Morphotectonic evolution of the Adriatic piedmont of the Apennines: an advancement in the knowledge of the Marche-Abruzzo border area. Geomorphology 102:119–129

    Article  Google Scholar 

  • Demangeot J (1965) Géomorphologie des Abruzzes Adriatiques. Mém. et Doc. Du C.N.R.S, Paris, p 403

    Google Scholar 

  • Desplanques H (1969) Campagnes ombriennes. C.N.R.S, Paris

    Google Scholar 

  • Dramis F, Pambianchi G, Nesci O, Consoli M (1991) Il ruolo di elementi strutturali trasversali nell’evoluzione tettonico-sedimentaria e geomorphologic della Regione marchigiana. Studi Geologici Camerti, spec vol 1991/2. CROP 11:287–293

    Google Scholar 

  • Ficcarelli G, Silvestrini M (1991) Biochronologic remarks on the Local Fauna of Colle Curti (Colfiorito Basin, Umbrian-Marchean Apennine, Central Italy). Boll Soc Paleont Ital 30:197–200

    Google Scholar 

  • Font M, Amorese D, Lagarde JL (2010) DEM and GIS analysis of the stream gradient index to evaluate effects of tectonics: the Normandy intraplate area (NW France). Geomorphology 119:172–180

    Article  Google Scholar 

  • Galve JP, Piacentini D, Troiani F, Della Seta M (2013) Stream length-gradient index mapping as a tool for landslide identification. In: Pardo-Igùzquiza E et al (eds) Mathematics of planet earth, lectures notes in earth system sciences. Springer, Berlin, pp 343–346

    Google Scholar 

  • Gonga-Saholiariliva N, Gunnell Y, Harbor D, Mering C (2011) An automated method for producing synoptic regional maps of river gradient variation: procedure, accuracy tests, and comparison with other knickpoint mapping methods. Geomorphology 134:394–407

    Article  Google Scholar 

  • Hack JT (1973) Stream-profile analysis and stream-gradient index. US Geol Surv J Res 1:421–429

    Google Scholar 

  • Lee C, Tsai LL (2010) A quantitative analysis for geomorphic indices of longitudinal river profile: a case study of the Choushui River, Central Taiwan. Environ Earth Sci 59:1549–1558

    Article  Google Scholar 

  • Mazzoli S, Pierantoni PP, Borraccini F, Paltrinieri W, Deiana G (2005) Geometry, segmentation pattern and displacement variations along a major Apennine thrust zone, central Italy. J Struct Geol 27(11):1940–1953

    Article  Google Scholar 

  • Molin P, Fubelli G, Nocentini M, Sperini S, Ignat P, Grecu F, Dramis F (2012) Interaction of mantle dynamics, crustal tectonics, and surface processes in the topography of the Romanian Carpathians: a geomorphological approach. Glob Planet Change 90–91:58–72

    Article  Google Scholar 

  • Pedley RC, Busby JP, Dabek ZK (1993) GRAVMAG User Manual—interactive 2.5D gravity and magnetic modeling. British Geological Survey, Technical Report WK/93/26/R, p 73

  • Pérez-Peña JV, Azañón JM, Azor A, Delgado J, González-Lodeiro F (2009) Spatial analysis of stream power using GIS: SLk anomaly maps. Earth Surf Proc Land 34:16–25

    Article  Google Scholar 

  • Pierantoni PP, Deiana G, Galdenzi S (2013) Stratigraphic and structural features of the Sibillini Mountains (Umbria-Marche Apennines, Italy). Ital J Geosci 132(3):497–520

    Article  Google Scholar 

  • Pizzi A, Calamita F, Coltorti M, Pieruccini P (2002) Quaternary normal faults, intramontane basins and seismicity in the Umbria-Marche-Abruzzi Apennine Ridge (Italy): contribution of neotectonic analysis to seismic hazard assessment. Boll Soc Geol It spec vol 1:923–929

  • Ruano P, Rustichelli A, Galindo-Zaldívar J, Piccard L, Ruiz-Constán A, Tondi E, Pedrera AC, López-Garrido A, Sanz de Galdeano C, Agosta F (2012) Anomalías gravimétricas y relleno sedimentario relacionado con la actividad de fallas: un ejemplo de los Apeninos centrales. Geo Temas 13:1539–1542

    Google Scholar 

  • Scotti VN, Molin P, Faccenna C, Soligo M, Casas-Sainz A (2013) The influence of surface and tectonic processes on landscape evolution of the Iberian Chain (Spain): quantitative geomorphological analysis and geochronology. Geomorphology. doi:10.1016/j.geomorph.2013.09.017

    Google Scholar 

  • Telford WM, Geldhart LP, Sheriff RE (1990) Applied geophysics, 2nd edn. Cambridge University Press, Cambridge, p 770

    Book  Google Scholar 

  • Tiverti MM, Orlando L, Di Bucci D, Bernabini M, Parotto M (2005) Regional gravity anomaly map and crustal model of the Central-Southern Apennines (Italy). J Geodyn 40:73–91

    Article  Google Scholar 

  • Tondi E (2000) Geological analysis and seismic hazard in the Central Apennines. J Geodyn 29:517–534

    Article  Google Scholar 

  • Tondi E, Cello G (2003) Spatiotemporal evolution of the central Apennines fault system (Italy). J Geodyn 36:113–128

    Article  Google Scholar 

  • Troiani F, Della Seta M (2008) The use of the stream length-gradient index in morphotectonic analysis of small catchments: a case study from central Italy. Geomorphology 102:159–168

    Article  Google Scholar 

  • Troiani F, Della Seta M (2011) Geomorphological response of fluvial and coastal terraces to Quaternary tectonics and climate as revealed by geostatistical topographic analysis. Earth Surf Proc Land 36:1193–1208

    Article  Google Scholar 

  • Troiani F, Galve JP, Piacentini D, Della Seta M, Guerrero J (2014) Spatial analysis of stream length–gradient (SL) index for detecting hillslope processes: a case of the Gállego river headwater (Central Pyrenees, Spain). Geomorphology 214:183–197

    Article  Google Scholar 

  • Viveen W, van Balen RT, Schoorl JM, Veldkamp A, Temme AJAM, Vidal-Romani JR (2012) Tectonic geomorphology and neotectonic activity of the NW Iberian Atlantic Margin with examples from the Miño river system. Tectonophysics 544–545:13–30

    Article  Google Scholar 

  • Wegmann KW, Zurek BD, Regalla CA, Bilardello D, Wollenberg JL, Kopczynski SE, Ziemann JM, Haight SL, Apgar JD, Zhao C, Pazzaglia FJ (2007) Position of the Snake River watershed divide as an indicator of geodynamic processes in the greater Yellowstone region, western North America. Geosphere 3/4:272–281

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Aringoli.

Additional information

This peer-reviewed article is part of a coordinated collection of scientific researches on the comparative evolution of the intermontane basins of central-southern Apennines.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aringoli, D., Cavitolo, P., Farabollini, P. et al. Morphotectonic characterization of the quaternary intermontane basins of the Umbria-Marche Apennines (Italy). Rend. Fis. Acc. Lincei 25 (Suppl 2), 111–128 (2014). https://doi.org/10.1007/s12210-014-0330-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12210-014-0330-0

Keywords

Navigation