Skip to main content

Advertisement

Log in

[FeFe]-hydrogenases as biocatalysts in bio-hydrogen production

  • Concepts in Catalysis
  • Published:
Rendiconti Lincei Aims and scope Submit manuscript

Abstract

[FeFe]-hydrogenases catalyse H2 production at exceptionally high turnover numbers (up to 104 s−1). They are found in a variety of strict or facultative anaerobic microorganisms, such as bacteria of the genus Clostridium, Desulfovibrio, Thermotoga, and eukaryotes ranging from unicellular and coenobial green algae to anaerobic fungi, ciliates and trichomonads. Key to their activity is an organometallic centre, the H-cluster that cooperates tightly with the protein framework to reduce two protons into molecular hydrogen. The assembly of the catalytic site requires a specialised cellular mechanism based on the action of three other enzymes, called maturases: HydE, HydF and HydG. Recent advancements in the recombinant production of [FeFe]-hydrogenases have provided leaps forward in their exploitation in H2 production for clean energy storage. [FeFe]-hydrogenases have been used in several fermentative approaches where microorganisms are engineered to overexpress specific [FeFe]-hydrogenases to convert low-cost materials (e.g. wastes) into H2. [FeFe]-hydrogenases have also been proven to be excellent catalysts in different in vitro devices that can produce hydrogen directly from water, either via water electrolysis or via light-driven mechanisms, thus allowing the direct storage of solar energy into H2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adamska A, Silakov A, Lambertz C, Rüdiger O, Happe T, Reijerse E, Lubitz W (2012) Identification and characterization of the “super-reduced” state of the H-cluster in [FeFe] hydrogenase: a new building block for the catalytic cycle? Angew Chem Int Ed 51:11458–11462

    Article  CAS  Google Scholar 

  • Adamska-Venkatesh A, Krawietz D, Siebel J, Weber K, Happe T, Reijerse W, Lubitz W (2014) New redox states observed in [FeFe] hydrogenases reveal redox coupling within the H-cluster. J Am Chem Soc 136:11339–11346

    Article  CAS  Google Scholar 

  • Albertini M, Berto P, Vallese F, Di Valentin M, Costantini P, Carbonera D (2015) Probing the solvent accessibility of the [4Fe−4S] cluster of the hydrogenase maturation protein HydF from Thermotoga neapolitana by HYSCORE and 3p-ESEEM. J Phys Chem B 119:13680–13689

    Article  CAS  Google Scholar 

  • Applegate AM, Lubner CE, Knörzer P, Happe T, Golbeck JH (2016) Quantum yield measurements of light-induced H2 generation in a photosystem I-[FeFe]-H2ase nanoconstruct. Photosynth Res 127(1):5–11

    Article  CAS  Google Scholar 

  • Baffert C, Demuez M, Cournac L, Burlat B, Guigliarelli B, Bertrand P, Girbal L, Léger C (2008) Hydrogen-activating enzymes: activity does not correlate with oxygen sensitivity. Angew Chem Int Ed 47:2052–2054

    Article  CAS  Google Scholar 

  • Baffert C, Sybirna K, Ezanno P, Lautier T, Hajj V, Meynial-Salles I, Soucaille P, Bottin H, Léger C (2012) Covalent attachment of FeFe hydrogenases to carbon electrodes for direct electron transfer. Anal Chem 84:7999–8005

    Article  CAS  Google Scholar 

  • Berggren G, Adamska A, Lambertz C, Simmons TR, Esselborn J, Atta M, Gambarelli S, Mouesca JM, Reijerse E, Lubitz W, Happe T, Artero V, Fontecave M (2013) Biomimetic assembly and activation of [FeFe]-hydrogenases. Nature 499:66–70

    Article  CAS  Google Scholar 

  • Berto P, Di Valentin M, Cendron L, Vallese F, Albertini M, Salvatori E, Giacometti GM, Carbonera D, Costaintini P (2012) The [4Fe–4S]-cluster coordination of [FeFe]-hydrogenase maturation protein HydF as revealed by EPR and HYSCORE spectroscopies. Biochim Biophys Acta 1817:2149–2157

    Article  CAS  Google Scholar 

  • Betz JN, Boswell NW, Fugate CJ, Holliday GL, Akiva E, Scott AG, Babbitt PC, Peters JW, Shepard EM, Broderick JB (2015) [FeFe]-hydrogenase maturation: insights into the role HydE plays in dithiomethylamine biosynthesis. Biochemistry 54:1807–1818

    Article  CAS  Google Scholar 

  • Bingham AS, Smith PR, Swartz JR (2012) Evolution of an [FeFe] hydrogenase with decreased oxygen sensitivity. Int J Hydrog Energy 37:2965–2976

    Article  CAS  Google Scholar 

  • Brown KA, Dayal S, Ai X, Rumbles King PW (2010) Controlled assembly of hydrogenase-CdTe nanocrystal hybrids for solar hydrogen production. J Am Chem Soc 132:9672–9680

    Article  CAS  Google Scholar 

  • Brown KA, Wilker MB, Boehm M, Dukovic G, King PW (2012) Characterization of photochemical processes for H2 production by CdS nanorod-[FeFe] hydrogenase complexes. J Am Chem Soc 134:5627–5636

    Article  CAS  Google Scholar 

  • Calusinska M, Happe T, Joris B, Wilmotte A (2010) The surprising diversity of clostridial hydrogenases: a comparative genomic perspective. Microbiology 156:1575–1588

    Article  CAS  Google Scholar 

  • Cendron L, Berto P, D’Adamo S, Vallese F, Govoni C, Posewitz MC, Giacometti GM, Costantini P, Zanotti G (2011) Crystal structure of HydF scaffold protein provides insights into [FeFe]-hydrogenase maturation. J Biol Chem 286:43944–43950

    Article  CAS  Google Scholar 

  • Christopher K, Dimitrios R (2012) A review on exergy comparison of hydrogen production methods from renewable energy sources. Energy Environ Sci 5:6640–6651

    Article  CAS  Google Scholar 

  • Cohen J, Kim K, King P, Seibert M, Schulten K (2005) Finding gas diffusion pathways in proteins: application to O2 and H2 transport in CpI [FeFe]-hydrogenase and the role of packing defects. Structure 13:1321–1329

    Article  CAS  Google Scholar 

  • Cornish AJ, Gärtner K, Yang H, Peters JW, Hegg EL (2011) Mechanism of proton transfer in [FeFe]-hydrogenase from Clostridium pasteurianum. J Biol Chem 286:38341–38347

    Article  CAS  Google Scholar 

  • Czech I, Silakov A, Lubitz W, Happe T (2010) The [FeFe]-hydrogenase maturase HydF from Clostridium acetobutylicum contains a CO and CN- ligated iron cofactor. FEBS Lett 584:638–642

    Article  CAS  Google Scholar 

  • De Lacey AL, Fernández VM, Rousset M, Cammack R (2007) Activation and inactivation of hydrogenase function and the catalytic cycle: spectroelectrochemical studies. Chem Rev 107:4304–4330

    Article  CAS  Google Scholar 

  • Demuez M, Cournac L, Guerrini O, Soucaille P, Girbal L (2007) Complete activity profile of Clostridium acetobutylicum [FeFe]-hydrogenase and kinetic parameters for endogenous redox partners. FEMS Microbiol Lett 275:113–121

    Article  CAS  Google Scholar 

  • Dunn S (2002) Hydrogen futures: toward a sustainable energy system. Int J Hydrogen Energy 27:235–264

    Article  CAS  Google Scholar 

  • Esselborn J, Lambertz C, Adamska-Venkatesh A, Simmons T, Berggren G, Noth J, Siebel J, Hemschemeier A, Artero V, Reijerse E, Fontecave M, Lubitz W, Happe T (2013) Spontaneous activation of [FeFe]-hydrogenases by an inorganic [2Fe] active site mimic. Nature Chem Bio 9:607–609

    Article  CAS  Google Scholar 

  • Esselborn J, Muraki N, Engelbrecht V, Metzler-Nolte N, Apfel UP, Hofmann E, Kurisu G, Happe T (2015) A structural view of synthetic cofactor integration into [FeFe]-hydrogenases. Chem Sci 7:959–968

    Article  CAS  Google Scholar 

  • Fontecilla-Camps JC, Volbeda A, Cavazza C, Nicolet Y (2007) Structure/function relationships of [NiFe]- and [FeFe]-hydrogenases. Chem Rev 107:4273–4303

    Article  CAS  Google Scholar 

  • Fontecilla-Camps JC, Amara P, Cavazza C, Nicolet Y, Voldeba A (2009) Structure-function relationships of anaerobic gas-processing metalloenzymes. Nature 460:814–822

    Article  CAS  Google Scholar 

  • Fourmond V, Greco C, Sybirna K, Baffert C, Wang PH, Ezanno P, Montefiori M, Bruschi M, Meynial-Salles I, Soucaille P, Blumberger J, Bottin H, De Gioia L, Léger C (2014) The oxidative inactivation of FeFe hydrogenase reveals the flexibility of the H-cluster. Nature Chem 6:336–342

    Article  CAS  Google Scholar 

  • Goldet G, Brandmayr C, Stripp ST, Happe T, Cavazza C, Fontecilla-Camps JC, Armstrong FA (2009) Electrochemical kinetic investigations of the reactions of [FeFe]-hydrogenases with carbon monoxide and oxygen: comparing the importance of gas tunnels and active-site electronic/redox effects. J Am Chem Soc 131:14979–14989

    Article  CAS  Google Scholar 

  • Guerrini O, Burlat B, Leger C, Guigliarelli B, Soucaille P, Girbal L (2008) Characterization of two 2[4Fe4S] ferredoxins from Clostridium acetobutylicum. Curr Microbiol 56:261–267

    Article  CAS  Google Scholar 

  • Hajj V, Baffert C, Sybirna K, Meynial-Salles I, Soucaille P, Bottin H, Fourmond V, Léger C (2014) FeFe hydrogenase reductive inactivation and implication for catalysis. Energy Environ Sci 7:715–719

    Article  CAS  Google Scholar 

  • Hambourger M, Gervaldo M, Svedruzic D, King PW, Gust D, Ghirardi M, Moore AL, Moore TA (2008) [FeFe]-hydrogenase-catalyzed H2 production in a photoelectrochemical biofuel cell. J Am Chem Soc 130:2015–2022

    Article  CAS  Google Scholar 

  • Hexter SV, Grey F, Happe T, Climent V, Armstrong FA (2012) Electrocatalytic mechanism of reversible hydrogen cycling by enzymes and distinctions between the major classes of hydrogenases. Proc Natl Acad Sci 109:11516–11521

    Article  CAS  Google Scholar 

  • Holladay JD, Hu J, King DL, Wang Y (2009) An overview of hydrogen production technologies. Catal Today 139:244–260

    Article  CAS  Google Scholar 

  • Jacobson MZ (2009) Review of solutions to global warming, air pollution, and energy security. Energy Environ Sci 2:148–173

    Article  CAS  Google Scholar 

  • Jo JH, Jeon CO, Lee SY, Lee DS, Park JM (2010) Molecular characterization and homologous overexpression of [FeFe]-hydrogenase in Clostridium tyrobutyricum JM1. Int J Hydrog Energy 35:1065–1073

    Article  CAS  Google Scholar 

  • Kapdan IK, Kargi F (2006) Bio-hydrogen production from waste materials. Enzyme Microb Technol 38:569–582

    Article  CAS  Google Scholar 

  • King PW (2013) Designing interfaces of hydrogenase-nanomaterial hybrids for efficient solar conversion. Biochim Biophys Acta 1827:949–957

    Article  CAS  Google Scholar 

  • King PW, Posewitz MC, Ghirardi ML, Seibert M (2006) Functional studies of [FeFe] hydrogenase maturation in an Escherichia coli biosynthetic system. J Bacteriol 188:2163–2172

    Article  CAS  Google Scholar 

  • Knörzer P, Silakov A, Foster CE, Armstrong FA, Lubitz W, Happe T (2012) Importance of the protein framework for catalytic activity of [FeFe]-hydrogenases. J Biol Chem 286:38341–38347

    Google Scholar 

  • Krassen H, Stripp S, von Abendroth G, Ataka K, Happe T, Heberle J (2009) Immobilization of the [FeFe]-hydrogenase CrHydA1 on a gold electrode: design of a catalytic surface for the production of molecular hydrogen. J Biotechnol 142:3–9

    Article  CAS  Google Scholar 

  • Krassen H, Stripp S, Böhm N, Berkessel A, Happe T, Ataka K, Heberle J (2011) Tailormade modification of a gold surface for the chemical binding of a high-activity [FeFe] hydrogenase. Eur J Inorg Chem 2011:1138–1146

    Article  CAS  Google Scholar 

  • Kuchenreuther JM, Grady-Smith CS, Bingham AS, George SJ, Cramer SP, Swartz JR (2010) High-yield expression of heterologous [FeFe] hydrogenases in Escherichia coli. PLoS One 5:e15491

    Article  CAS  Google Scholar 

  • Kuchenreuther JM, George SJ, Grady-Smith CS, Cramer SP, Swartz JR (2011) Cell-free H-cluster synthesis and [FeFe] hydrogenase activation: all five CO and CN- ligands derive from tyrosine. PLoS One 6:e20346

    Article  CAS  Google Scholar 

  • Kuchenreuther JM, Britt RD, Swartz JR (2012) New insights into [FeFe] hydrogenase activation and maturase function. PLoS One 7:e45850

    Article  CAS  Google Scholar 

  • Kuchenreuther JM, Myers WK, Suess DLM, Stich TA, Pelmenschikov V, Shiigi SA, Cramer SP, Swartz JR, Britt RD, George SJ (2014) The HydG enzyme generates an Fe(CO)2(CN) synthon in assembly of the FeFe hydrogenase H-cluster. Science 343:424–427

    Article  CAS  Google Scholar 

  • Lambertz C, Leidel N, Havelius KGV, Noth J, Chernev P, Winkler M, Happe T, Haumann M (2011) O2 reactions at the six-iron active site (H-cluster) in [FeFe]-hydrogenase. J Biol Chem 286:40614–40623

    Article  CAS  Google Scholar 

  • Lautier T, Ezanno P, Baffert C, Fourmond V, Cournac L, Fontecilla-Camps JC, Soucaille P, Bertrand P, Meynial-Salles I, Léger C (2011) The quest for a functional substrate access tunnel in FeFe hydrogenase. Faraday Discuss 148:385–407

    Article  CAS  Google Scholar 

  • Lemon BJ, Peters JW (1999) Binding of exogenously added carbon monoxide at the active site of the iron-only hydrogenase (CpI) from Clostridium pasteurianum. Biochemistry 38:12969–12973

    Article  CAS  Google Scholar 

  • Levin DB, Pitt L, Love M (2004) Biohydrogen production: prospects and limitations to practical application. Int J Hydrog Energy 29:173–185

    Article  CAS  Google Scholar 

  • Liebgott PP, Leroux F, Burlat B, Dementin S, Baffert C, Lautier T, Fourmond V, Ceccaldi P, Cavazza C, Meynial-Salles I, Soucaille P, Fontecilla-Camps JC, Guigliarelli B, Bertrand P, Rousset M, Lèger C (2010) Relating diffusion along the substrate tunnel and oxygen sensitivity in hydrogenase. Nature Chem Biol 6:63–70

    Article  CAS  Google Scholar 

  • Lu F, Smith PR, Mehta K, Swartz JR (2015) Development of a synthetic pathway to convert glucose to hydrogen using cell free extracts. Int J Hydrog Energy 30:9113–9124

    Article  CAS  Google Scholar 

  • Lubitz W, Reijerse E, van Gastel M (2007) [NiFe] and [FeFe] hydrogenases studied by advanced magnetic resonance techniques. Chem Rev 107:4331–4365

    Article  CAS  Google Scholar 

  • Lubitz W, Ogata H, Rüdiger O, Reijerse E (2014) Hydrogenases. Chem Rev 114:4081–4148

    Article  CAS  Google Scholar 

  • Lubner CE, Grimme R, Bryant DA, Golbeck JH (2010) Wiring photosystem I for direct solar hydrogen production. Biochemistry 49:404–414

    Article  CAS  Google Scholar 

  • Lubner CE, Applegate AM, Knörzer P, Ganago A, Bryant DA, Happe T, Golbeck JH (2011) Solar hydrogen-producing bionanodevice outperforms natural photosynthesis. Proc Natl Acad Sci USA 108:20988–20991

    Article  CAS  Google Scholar 

  • Luque R, Herrero-Davila L, Campelo JM, Clark JH, Hidalgo JM, Luna D, Marinas JM, Romero AA (2008) Biofuels: a technological perspective. Energy Environ Sci 1:542–564

    Article  CAS  Google Scholar 

  • Martín del Campo JS, Rollin J, Myung S, Chun Y, Chandrayan S, Patiño R, Adams MW, Zhang YH (2013) High-yield production of dihydrogen from xylose by using a synthetic enzyme cascade in a cell-free system. Angew Chem Int Ed Engl 52:4587–4590

    Article  CAS  Google Scholar 

  • McGlynn SE, Ruebush SS, Naumov A, Nagy LE, Dubini A, King PW, Broderick JB, Posewitz MC, Peters JW (2007) In vitro activation of [FeFe] hydrogenase: new insights into hydrogenase maturation. J Biol Inorg Chem 12:443–447

    Article  CAS  Google Scholar 

  • McGlynn SE, Shepard EM, Winsloe MA, Naumov AV, Duschene KS, Posewitz MC, Broderick WE, Broderick JB, Peters JW (2008) HydF as a scaffold protein in [FeFe] hydrogenase H-cluster biosynthesis. FEBS Lett 582:2183–2187

    Article  CAS  Google Scholar 

  • Mersch D, Lee CY, Zhang JZ, Brinkert K, Fontecilla-Camps JC, Rutherford AW, Reisner E (2015) Wiring of photosystem II to hydrogenase for photoelectrochemical water splitting. J Am Chem Soc 137:8541–8549

    Article  CAS  Google Scholar 

  • Meyer J (2007) [FeFe] hydrogenases and their evolution: a genomic perspective. Cell Mol Life Sci 64:1063–1084

    Article  CAS  Google Scholar 

  • Morimoto K, Kimura T, Sakka K, Ohmiya K (2005) Overexpression of a hydrogenase gene in Clostridium paraputrificum to enhance hydrogen gas production. FEMS Microbiol Lett 246:229–234

    Article  CAS  Google Scholar 

  • Morra S, Valetti F, Sadeghi SJ, King PW, Meyer T, Gilardi G (2011) Direct electrochemistry of an [FeFe]-hydrogenase on a TiO2 electrode. Chem Commun 47:10566–10568

    Article  CAS  Google Scholar 

  • Morra S, Giraudo A, Di Nardo G, King PW, Gilardi G, Valetti F (2012) Site saturation mutagenesis demonstrates a central role for cysteine 298 as proton donor to the catalytic site in CaHydA [FeFe]-hydrogenase. PLoS One 7:e48400

    Article  CAS  Google Scholar 

  • Morra S, Arizzi M, Allegra P, La Licata B, Sagnelli F, Zitella P, Gilardi G, Valetti F (2014) Expression of different types of [FeFe]-hydrogenase genes in bacteria isolated from a population of a bio-hydrogen pilot-scale plant. Int J Hydrog Energy 39:9018–9027

    Article  CAS  Google Scholar 

  • Morra S, Cordara A, Gilardi G, Valetti F (2015a) Atypical effect of temperature tuning on the insertion of the catalytic iron-sulfur centre in a recombinant [FeFe]-hydrogenase. Protein Sci 24:2090–2094

    Article  CAS  Google Scholar 

  • Morra S, Valetti F, Sarasso V, Castrignanò S, Sadeghi SJ, Gilardi G (2015b) Hydrogen production at high Faradaic efficiency by a bio-electrode based on TiO2 adsorption of a new [FeFe]-hydrogenase from Clostridium perfringens. Bioelectrochemistry 106(Pt B):258–262

    Article  CAS  Google Scholar 

  • Morra S, Maurelli S, Chiesa M, Mulder DW, Ratzloff MW, Giamello E, King PW, Gilardi G, Valetti F (2016a) The effect of a C298D mutation in CaHydA [FeFe]-hydrogenase: insights into the protein-metal cluster interaction by EPR and FTIR spectroscopic investigation. Biochim Biophys Acta 2016:98–106

    Article  CAS  Google Scholar 

  • Morra S, Mongili B, Maurelli S, Gilardi G, Valetti F (2016b) Isolation and characterization of a new [FeFe]-hydrogenase from Clostridium perfringens. Biotechnol Appl Biochem. doi:10.1002/bab.1382 (in press)

    Google Scholar 

  • Mulder DW, Boyd ES, Sarma R, Lange RK, Endrizzi JA, Broderick JB, Peters JW (2010) Stepwise [FeFe]-hydrogenase H-cluster assembly revealed in the structure of HydAΔEFG. Nature 465:248–251

    Article  CAS  Google Scholar 

  • Mulder DW, Ratzloff M, Shepard EM, Byer AS, Noone SM, Peters JW, Broderick JB, King PW (2013) EPR and FTIR analysis of the mechanism of H2 activation by [FeFe]-hydrogenase HydA1 from Chlamydomonas reinhardtii. J Am Chem Soc 135:6921–6929

    Article  CAS  Google Scholar 

  • Mulder DW, Ratzloff MW, Bruschi M, Greco C, Koonce E, Peters JW, King PW (2014) Investigations on the role of proton-coupled electron transfer in hydrogen activation by [FeFe]-hydrogenase. J Am Chem Soc 136:15394–15402

    Article  CAS  Google Scholar 

  • Nagy LE, Meuser JE, Plummer S, Seibert M, Ghirardi ML, King PW, Ahmann D, Posewitz MC (2007) Application of gene-shuffling for the rapid generation of novel [FeFe]-hydrogenase libraries. Biotechnol Lett 29:421–430

    Article  CAS  Google Scholar 

  • Nicolet Y, Fontecilla-Camps JC (2012) Structure–function relationships in [FeFe]-hydrogenase active site maturation. J Biol Chem 287:13532–13540

    Article  CAS  Google Scholar 

  • Nicolet Y, Piras C, Legrand P, Hatchikian CE, Fontecilla-Camps JC (1999) Desulfovibrio desulfuricans iron hydrogenase: the structure shows unusual coordination to an active site Fe binuclear center. Structure 7:13–23

    Article  CAS  Google Scholar 

  • Nicolet Y, Rubach JK, Posewitz MC, Amara P, Mathevon C, Atta M, Fontecave M, Fontecilla-Camps JC (2008) X-ray structure of the [FeFe]-hydrogenase maturase HydE from Thermotoga maritima. J Biol Chem 283:18861–18872

    Article  CAS  Google Scholar 

  • Orain C, Saujet L, Gauquelin C, Soucaille P, Meynial-Salles I, Baffert C, Fourmond V, Bottin H, Léger C (2015) Electrochemical measurements of the kinetics of inhibition of two FeFe hydrogenases by O2 demonstrate that the reaction is partly reversible. J Am Chem Soc 137:12580–12587

    Article  CAS  Google Scholar 

  • Pagnier A, Martin L, Zeppieri L, Nicolet Y, Fontecilla-Camps JC (2016) CO and CN syntheses by [FeFe]-hydrogenase maturase HydG are catalytically differentiated events. Proc Natl Acad Sci 113:104–109

    Article  CAS  Google Scholar 

  • Pandey AS, Harris TV, Giles LJ, Peters JW, Szilagyi RK (2008) Dithiomethylether as a ligand in the hydrogenase H-cluster. J Am Chem Soc 130:4533–4540

    Article  CAS  Google Scholar 

  • Peters JW (1999) Structure and mechanism of iron-only hydrogenases. Curr Opin Struct Biol 9:670–676

    Article  CAS  Google Scholar 

  • Peters JW, Lanzilotta WN, Lemon BJ, Seefeldt LC (1998) X-ray crystal structure of the Fe-only hydrogenase (CpI) from Clostridium pasteurianum to 1.8 Angstrom resolution. Science 282:1853–1858

    Article  CAS  Google Scholar 

  • Peters JW, Schut GJ, Boyd ES, Mulder DW, Shepard EM, Broderick JB, King PW, Adams MWW (2015) [FeFe]- and [NiFe]-hydrogenase diversity, mechanism, and maturation. Biochim Biophys Acta 1853:1350–1369

    Article  CAS  Google Scholar 

  • Polliotto V, Morra S, Livraghi S, Valetti F, Gilardi G, Giamello E (2016) Electron transfer and H2 evolution in hybrid systems based on [FeFe]-hydrogenase anchored on modified TiO2. Int J Hydrog Energy. doi:10.1016/j.ijhydene.2016.05.002 in press

    Google Scholar 

  • Posewitz MC, King PW, Smolinski SL, Zhang L, Seibert M, Ghirardi ML (2004) Discovery of two novel radical S-adenosylmethionine proteins required for the assembly of an active [Fe] hydrogenase. J Biol Chem 279:25711–25720

    Article  CAS  Google Scholar 

  • Ramachandran R, Menon RK (1998) An overview of industrial uses of hydrogen. Int J Hydrog Energy 7:593–598

    Article  Google Scholar 

  • Reisner E (2011) Solar hydrogen evolution with hydrogenases: from natural to hybrid systems. Eur J Inorg Chem 2011:1005–1016

    Article  CAS  Google Scholar 

  • Reisner E, Powell DJ, Cavazza C, Fontecilla-Camps JC, Armstrong FA (2009) Visible light-driven H(2) production by hydrogenases attached to dye-sensitized TiO(2) nanoparticles. J Am Chem Soc 131:18457–18466

    Article  CAS  Google Scholar 

  • Schultz MG, Diehl T, Brasseur GP, Zittel W (2003) Air pollution and climate-forcing impacts of a global hydrogen economy. Science 302:624–627

    Article  CAS  Google Scholar 

  • Schwab DE, Tard C, Brecht E, Peters JW, Pickett CJ, Szilagyi RK (2006) On the electronic structure of the hydrogenase H-cluster. Chem Commun 35:3696–3698

    Article  CAS  Google Scholar 

  • Shepard EM, McGlynn SE, Bueling AL, Grady-Smith CS, George SJ, Winslow MA, Cramer SP, Peters JW, Broderick JB (2010) Synthesis of the 2Fe subcluster of the [FeFe]-hydrogenase H cluster on the HydF scaffold. Proc Natl Acad Sci 107:10448–10453

    Article  CAS  Google Scholar 

  • Silakov A, Wenk B, Reijerse E, Lubitz W (2009) 14N HYSCORE investigation of the H-cluster of [FeFe] hydrogenase: evidence for a nitrogen in the dithiol bridge. Phys Chem Chem Phys 11:6592–6599

    Article  CAS  Google Scholar 

  • Smith PR, Bingham AS, Swartz JR (2012) Generation of hydrogen from NADPH using an [FeFe] Hydrogenase. Int J Hydrog Energy 37:2977–2983

    Article  CAS  Google Scholar 

  • Stapleton JA, Swartz JR (2010) A cell-free microtiter plate screen for improved [FeFe] hydrogenases. PLoS One 5:e10554

    Article  CAS  Google Scholar 

  • Stripp S, Sanganas O, Happe T, Haumann M (2009a) The structure of the active site H-cluster of [FeFe] hydrogenase from the green alga Chlamydomonas reinhardtii studied by X-ray absorption spectroscopy. Biochemistry 48:5042–5049

    Article  CAS  Google Scholar 

  • Stripp ST, Goldet G, Brandmayr C, Sanganas O, Vincent KA, Haumann M, Armstrong FA, Happe T (2009b) How oxygen attacks [FeFe] hydrogenases from photosynthetic organisms. Proc Natl Acad Sci 106:17331–17336

    Article  CAS  Google Scholar 

  • Svedružić D, Blackburn JL, Tenent RC, Rocha JD, Vinzant TB, Heben MJ, King PW (2011) High-performance hydrogen production and oxidation electrodes with hydrogenase supported on metallic single-wall carbon nanotube networks. J Am Chem Soc 133:4299–4306

    Article  CAS  Google Scholar 

  • Swanson KD, Ratzloff MW, Mulder DW, Artz JH, Ghose S, Hoffman A, White S, Zadvornyy OA, Broderick JB, Bothner B, King PW, Peters JW (2015) [FeFe]-hydrogenase oxygen inactivation is initiated at the H cluster 2Fe subcluster. J Am Chem Sci 137:1809–1816

    Article  CAS  Google Scholar 

  • Sybirna K, Antoine T, Lindberg P, Fourmond V, Rousset M, Mèjean V, Bottin H (2008) Shewanella oneidensis: a new and efficient system for expression and maturation of heterologous [Fe–Fe] hydrogenase from Chlamydomonas reinhardtii. BMC Biotechnol 8:73

    Article  CAS  Google Scholar 

  • Vignais PM, Billoud B (2007) Occurrence, classification, and biological function of hydrogenases: an overview. Chem Rev 107:4206–4272

    Article  CAS  Google Scholar 

  • Vincent KA, Parkin A, Armstrong FA (2007) Investigating and exploiting the electrocatalytic properties of hydrogenases. Chem Rev 107:4366–4413

    Article  CAS  Google Scholar 

  • von Abendroth G, Stripp S, Silakov A, Croux C, Soucaille P, Girbal L, Happe T (2008) Optimized overexpression of [FeFe] hydrogenases with high specific activity in Clostridium acetobutylicum. Int J Hydrog Energy 33:6076–6081

    Article  CAS  Google Scholar 

  • Voordouw G, Hagen WR, Krüse-Wolters KM, van Berkel-Arts A, Veeger C (1987) Purification and characterization of Desulfovibrio vulgaris (Hildenborough) hydrogenase expressed in Escherichia coli. Eur J Biochem 162:31–36

    Article  CAS  Google Scholar 

  • Winkler M, Kuhlgert S, Hippler M, Happe TJ (2009) Characterization of the key step for light-driven hydrogen evolution in green algae. J Biol Chem 284:36620–36627

    Article  CAS  Google Scholar 

  • Winkler M, Esselborn J, Happe T (2013) Molecular basis of [FeFe]-hydrogenase function. An insight into the complex interplay between protein and catalytic cofactor. Biochim Biophys Acta 1827:974–985

    Article  CAS  Google Scholar 

  • Woodward J, Orr M, Cordray K, Greenbaum E (2000) Biotechnology: enzymatic production of biohydrogen. Nature 405:1014–1015

    Article  CAS  Google Scholar 

  • Woolerton TW, Sheard S, Chaudhary YS, Armstrong FA (2012) Enzymes and bio-inspired electrocatalysts in solar fuel devices. Energy Environ Sci 5:7470–7490

    Article  CAS  Google Scholar 

  • Yacoby I, Pochekailov S, Toporik H, Ghirardi ML, King PW, Zhang S (2011) Photosynthetic electron partitioning between [FeFe]-hydrogenase and ferredoxin: nADP + -oxidoreductase (FNR) enzymes in vitro. Proc Natl Acad Sci 108:9396–9401

    Article  CAS  Google Scholar 

  • Yacoby I, Tegler LT, Pochekailov S, Zhang S, King PW (2012) Optimised expression and purification for high-activity preparations of algal [FeFe]-hydrogenase. PLoS One 7:e35886

    Article  CAS  Google Scholar 

  • Zhang YHP, Evans BR, Mielenz JR, Hopkins RC, Adams MWW (2007) High-yield hydrogen production from starch and water by a synthetic enzymatic pathway. PLoS One 2:e456

    Article  CAS  Google Scholar 

Download references

Acknowledgements

S.M. acknowledges support from the Compagnia di San Paolo for participation in the Conference “Concepts in catalysis: from heterogeneous to homogeneous and enzymatic catalysis” held at Accademia dei Lincei in Rome on February 25–26 2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianfranco Gilardi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morra, S., Valetti, F. & Gilardi, G. [FeFe]-hydrogenases as biocatalysts in bio-hydrogen production. Rend. Fis. Acc. Lincei 28 (Suppl 1), 183–194 (2017). https://doi.org/10.1007/s12210-016-0584-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12210-016-0584-9

Keywords

Navigation