Skip to main content
Log in

Design optimisation and fabrication of SU-8 based electro-thermal micro-grippers

  • Research Paper
  • Published:
Journal of Micro-Nano Mechatronics Aims and scope Submit manuscript

Abstract

This paper describes the design and simulation of an integrated micro-electro-mechanical system (MEMS) to be used for micromanipulation. Electrothermal micro-grippers were designed for micro-tensile tests of biological materials which require relatively low force and temperature. Finite element analysis (FEA) was performed to examine gripper opening displacements, tip temperature and stresses. The feasibility of various materials including silicon, plated nickel and SU-8 was examined for applications in biological environment. The paper looks at fabrication techniques employed to allow a cheaper, wet etching solution, to the fabrication of SU-8 micro-grippers. The structure was successfully fabricated and tested. The results showed that the micro-gripper could be actuated by fairly low voltage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Suresh S (2007) Biomechanics and biophysics of cancer cells. Acta Biomater 3(4):413–438

    Article  Google Scholar 

  2. Cross SE, Jin YS, Tondre J, Wong R, Rao J, Gimzewski JK (2008) AFM-based analysis of human metastatic cancer cells. Nanotechnology 19(38):384003

    Article  Google Scholar 

  3. Yao W (2009) Wild type p53 gene causes reorganization of cytoskeleton and, therefore, the impaired deformability and difficult migration of murine erythroleukemia cells. Cell Motil Cytoskeleton 56(1):1–12

    Article  Google Scholar 

  4. Guck J, Ananthakrishnan R, Mahmood H, Moon TJ, Cunningham CC, Käs J (2001) The optical stretcher: a novel laser tool to micromanipulate cells. Biophys J 81(2):767–784

    Article  Google Scholar 

  5. Castro N (2008) Mechanical characterization of cells and tissues at the micro scale. Revista Ingenieria Biomechanica, Publicación semestral de carácter técnico-científico, Edición 3, enero-junio 2008

  6. Menciassi A, Eisinberg A, Carrozza MC, Dario P (2003) Force sensing microinstrument for measuring tissue properties and pulse in microsurgery. IEEE/ASME Trans Mechatron 8(1):10–17

    Article  Google Scholar 

  7. Chronis N, Lee LP (2005) Electrothermally activated su-8 microgripper for single cell manipulation in solution. Journal of Microelectromechanical Systems 14(4):857–863

    Article  Google Scholar 

  8. Kim CJ, Pisano AP, Muller RS (1992) Silicon-processed overhanging microgripper. Journal of Microelectromechanical Systems 1(1):31–36

    Article  Google Scholar 

  9. Volland BE, Heerlein H, Rangelow IW (2002) Electrostatically driven microgripper. Microelectron Eng 61–62:1015–1023

    Article  Google Scholar 

  10. Guckel H, Klein J, Christenson T, Skrobis K, Laudon M, Lovell EG (1992) Thermo-magnetic metal flexure actuators. In: Solid-state sensor and actuator workshop. 5th Technical Digest, IEEE, pp 73–75

  11. Mankame ND, Ananthasuresh GK (2001) Comprehensive thermal modelling and characterization of an electro-thermal-compliant microactuator. J Micromech Microeng 11(5):452–462

    Article  Google Scholar 

  12. Pan CS, Hsu W (1997) An electro-thermally and laterally driven polysilicon microactuator. J Micromech Microeng 7(1):7–13

    Article  Google Scholar 

  13. Lin L, Lin SH (1998) Vertically driven microactuators by electrothermal buckling effects. Sens Actuators, A 71(1–2):35–39

    Google Scholar 

  14. Xinhan H, Jianhua C, Min W, Xiadong L (2005) A piezoelectric bimorph micro-gripper with micro-force sensing. In IEEE International Conference on: Information Acquisition p. 5

  15. Nah SK, Zhong ZW (2007) A microgripper using piezoelectric actuation for micro-object manipulation. Sens Actuators, A 133(1):218–224

    Article  Google Scholar 

  16. Kohl M, Just E, Pfleging W, Miyazaki S (2000) SMA Microgripper with integrated antagonism. Sens Actuators, A 83(1–3):208–213

    Google Scholar 

  17. Leong TG, Randall CL, Benson BR, Bassik N, Stern GM, Gracias DH (2009) Tetherless thermobiochemically actuated microgrippers. PNAS 106:703

    Article  Google Scholar 

  18. Tyagi P, Bassik N, Leong TG, Cho J-H, Benson BR, Gracias DH (2009) Self-assembly based on chromium/copper bilayers. Journal of Microelectromechanical Systems 18:784–791

    Article  Google Scholar 

  19. Luo JK, Flewitt AJ, Spearing SM, Fleck NA, Milne WI (2005) Comparison of microtweezers based on three lateral thermal actuator configurations. J Micromech Microeng 15(6):1294–1302

    Article  Google Scholar 

  20. Thomas CR, Zhang Z, Cowen C (2000) Micromanipulation measurements of biological materials. Biotechnol Lett 22:531–537

    Article  Google Scholar 

  21. Peeters EGA (ed) (2004) Biomechanics of single cells under compression. Technische Universiteit Eindhoven, Eindhoven

  22. Legtenberg R, Groeneveld AW, Elwenspoek M (1996) Comb-drive actuators for large displacements. J Micromech Microeng 6(3):320–329

    Article  Google Scholar 

  23. Ansys User Guide (2009) Ansys Inc

  24. Mackay RE, Le HR (2008) Development of micro-tweezers for tissue micro-manipulation. In: Proceedings of the 2nd International Conference on Bioinformatics and Biomedical Engineering, Shanghai, pp 1551–1554

  25. Heo S, Yoon GH, Kim YY (2008) Minimum scale controlled topology optimization and experimental test of a micro thermal actuator. Sens Actuators, A 141(2):603–609

    Article  Google Scholar 

  26. Son D, Kim J, Kim JY, Kwon D (2005) Tensile properties and fatigue crack growth in LIGA nickel MEMS structures. Mater Sci Eng, A 406(1–2):274–278

    Google Scholar 

  27. Sharpe WN Jr, LaVan DA, Edwards RL (1997) Mechanical properties of LIGA-deposited nickel for MEMS transducers. In: Solid state sensors and actuators, transducers '97 Chicago. pp 607–610

  28. Dellmann L, Roth S, Beuret C, Racine GA, Lorenz H, Despont M, Renaud P, Vettiger P, de Rooij NF (1998) Fabrication process of high aspect ratio elastic and SU-8 structures for piezoelectric motor applications. Sens Actuators, A 70(1–2):42–47

    Google Scholar 

  29. Choi HS, Lee DC, Kim SS, Han CS (2005) The development of a microgripper with a perturbation-based configuration design method. J Micromech Microeng 15(6):1327–1333

    Article  Google Scholar 

Download references

Acknowledgement

Financial support of EPSRC and IDB Technologies Ltd. towards a PhD Studentship for R.E.M. is acknowledged. The authors want to thank Prof. I Nathke for biological input to project. The authors are grateful of the constructive discussions with Dr K Donnelly and the assistance of technicians in the School of Engineering, Physics and Mathematics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruth E. Mackay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mackay, R.E., Le, H.R. & Keatch, R.P. Design optimisation and fabrication of SU-8 based electro-thermal micro-grippers. J. Micro-Nano Mech. 6, 13–22 (2011). https://doi.org/10.1007/s12213-010-0029-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12213-010-0029-y

Keywords

Navigation