Skip to main content
Log in

Comparison between artificial neural network and response surface methodology in the prediction of the production rate of polyacrylonitrile electrospun nanofibers

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

This paper focused on using response surface methodology (RSM) and artificial neural network (ANN) to analyze production rate of electrospun nanofibers. The three important electrospinning factors were studied including polymer concentration (wt %), applied voltage (kV) and the nozzle-collector distance (cm). The predicted production rates were in agreement with the experimental results in both ANN and RSM techniques. High regression coefficient between the variables and the response (R 2=0.975) indicates excellent evaluation of experimental data by second-order polynomial regression model. The regression coefficient was 0.988, which indicates that the ANN model was shows good fitting with experimental data. The obtained results indicate that the performance of ANN was better than RSM. It was concluded that applied voltage plays an important role (relative importance of 42.8 %) against production rate of electrospun nanofibers. The RSM model predicted the 2802.3 m/min value of the highest production rate at conditions of 15 wt % polymer concentration, 16 kV of the applied voltage, and 15 cm of nozzle-collector distance. The predicted value showed only 4.4 % difference with experimental results in which 2931.0 m/min at the same setting was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Ramakrishna, K. Fujihara, W. E. Teo, T. C. Lim, and Z. Ma, “An Introduction to Electrospinning and Nanofibers”, World Scientific Publishing, Singapore, 2005.

    Book  Google Scholar 

  2. J. H. He, Y. Liu, L. F. Mo, Y. Q. Wan, and L. Xu, “Electrospun Nanofibres and Their Applications”, pp.6–10, Smithers Rapra Technology, United Kingdom, 2008.

    Google Scholar 

  3. A. L. Andrady, “Science and Technology of Polymer Nanofibers”, Wiley, New Jersey, 2008.

    Book  Google Scholar 

  4. M. Abdouss, A. M. Shoushtari, A. Haji, and B. Moshref, Chem. Ind. Chem. Eng. Q., 18, 27 (2012).

    Article  CAS  Google Scholar 

  5. N. Sabetzadeh, H. Bahrambeygi, A. Rabbi, and K. Nasouri, Micro. Nano. Lett., 7, 662 (2012).

    Article  Google Scholar 

  6. T. Ondarçuhu and C. Joachim, Europhys. Lett., 42, 215 (1998).

    Article  Google Scholar 

  7. L. Feng, S. Li, Y. Li, H. Li, L. Zhang, J. Zhai, Y. Song, B. Liu, L. Jiang, and D. Zhu, Adv. Mater., 14, 1221 (2002).

    Article  Google Scholar 

  8. P. X. Ma and R. Zhang, J. Biomed. Mater. Res., 46, 60 (1999).

    Article  CAS  Google Scholar 

  9. G. Liu, J. Ding, L. Qiao, A. Guo, B. P. Dymov, J. T. Gleeson, T. Hashimoto, and K. Saijo, Chem. A Eur. J., 5, 2740 (1999).

    Article  CAS  Google Scholar 

  10. J. Doshi and D. H. Reneker, J. Electrostat., 35, 151 (1995).

    Article  CAS  Google Scholar 

  11. K. Nasouri, A. M. Shoushtari, and A. Kaflou, Micro. Nano. Lett., 7, 423 (2012).

    Article  Google Scholar 

  12. D. C. Montgomery, “Design and Analysis of Experiments”, John Wiley & Sons Inc., New York, 2008.

    Google Scholar 

  13. R. H. Myers, D. C. Montgomery, and C. M. Anderson-Cook, “Response Surface Methodology”, Allyn and Bacon Boston, New York, 1971.

    Google Scholar 

  14. T. L. Fine, “Feedforward Neural Network Methodology”, Springer, New York, 1999.

    Google Scholar 

  15. A. I. Galushkin, “Neural Networks Theory”, Springer, New York, 2007.

    Google Scholar 

  16. R. Chattopadhyay and A. Guha, Text. Prog., 35, 1 (2004).

    Article  Google Scholar 

  17. M. Khamforoush, F. Dabirian, and S. Majedi, Iran. J. Polym. Sci. Technol., 23, 233 (2009).

    Google Scholar 

  18. M. Khamforoush and M. Mahjob, Mater. Lett., 65, 453 (2011).

    Article  CAS  Google Scholar 

  19. K. Nasouri, H. Bahrambeygi, A. Rabbi, A. M. Shoushtari, and A. Kaflou, J. Appl. Polym. Sci., 126, 127 (2012).

    Article  CAS  Google Scholar 

  20. A. Rabbi, K. Nasouri, H. Bahrambeygi, A. M. Shoushtari, and M. R. Babaei, Fiber. Polym., 13, 1007 (2012).

    Article  CAS  Google Scholar 

  21. B. K. Korbahti and M. A. Rauf, Chem. Eng. J., 136, 25 (2008).

    Article  Google Scholar 

  22. M. Kasiri, H. Aleboyeh, and A. Aleboyeh, Environ. Sci. Technol., 42, 7970 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Komeil Nasouri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nasouri, K., Shoushtari, A.M. & Khamforoush, M. Comparison between artificial neural network and response surface methodology in the prediction of the production rate of polyacrylonitrile electrospun nanofibers. Fibers Polym 14, 1849–1856 (2013). https://doi.org/10.1007/s12221-013-1849-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-013-1849-x

Keywords

Navigation