Skip to main content
Log in

Effect of water and fiber length on the mechanical properties of polypropylene matrix composites

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

This paper presents the results of a current study on polypropylene matrix composites processed by injection, with two different glass fiber lengths and five different volume fractions. Physical and mechanical properties were obtained, namely flexural strength, stiffness modulus and fracture toughness. The mechanical properties of the composites increased significantly with the increase of the fibers volume fraction in agreement with the Counto model. The effect of water immersion time was also analysed. Immersion in water promotes a marked decrease in mechanical properties in the early seven-ten days, and afterwards tends to stabilize. Water causes a decrease of the relative strength which increases with fiber volume fraction and reaches about 29 % and 32 % for 20 % of 4.5 mm fiber length and for 25 % of 12 mm fiber length respectively, after 28 days immersion in water. Fracture toughness increases with fiber volume fraction and is always higher for 12 mm fiber length composites than for 4.5 mm fiber length composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Wambua, J. Ivens, and I. Verpoest, Elsevier Science, Belgium, 2003.

  2. S. Y. Fu, B. Lauke, E. Mader, C. Yue, and X. Hu, Compos. Part A-Appl. S, 31, 117 (2000).

    Article  Google Scholar 

  3. J. L. Thomason, Compos. Part A-Appl. S, 33, 1641 (2002).

    Article  Google Scholar 

  4. F. Ramsteiner and R. Theysohn, Composites, 10, 111 (1979).

    Article  CAS  Google Scholar 

  5. J. L. Thomason, Compos. Part A-Appl. S., 38, 210 (2007).

    Article  Google Scholar 

  6. S. C. Tjong and S. A. Xu, Compos. Sci. Technol., 62, 2017 (2002).

    Article  CAS  Google Scholar 

  7. B. Mouhmid, A. Imad, N. Benseddiq, S. Benmedakhéne, and A. Maazouz, Polymer Testing, 25, 544 (2006).

    Article  CAS  Google Scholar 

  8. N. Sato and T. Kurauchi, J. Mater. Sci., 19, 1145 (1984).

    Article  CAS  Google Scholar 

  9. J. Karger-Kocsis and K. Friedrich, Compos. Sci. Technol., 32, 293 (1988).

    Article  CAS  Google Scholar 

  10. S. Hashemi and J. G. William, Polym. Eng. Sci., 26, 760 (1986).

    Article  CAS  Google Scholar 

  11. A. Espert, F. Vilaplana, and S. Karlson, Compos. Part AAppl. S, 35, 1267 (2004).

    Article  Google Scholar 

  12. H. N. Dhakal, Z. Y. Zhang, and M. O. W. Richardson, Compos. Sci. Technol., 67, 1674 (2007).

    Article  CAS  Google Scholar 

  13. A. Zafar, F. Bertocco, J. SchjØdt-Thomsen, and J. C. Rauhe, Compos. Sci. Technol., 72, 656 (2012).

    Article  CAS  Google Scholar 

  14. J. L. Thomason, M. A. Wug, G. Schipper, and H. G. L. T. Krikor, Compos. Part A-Appl. S., 27A, 1075 (1996).

    Article  CAS  Google Scholar 

  15. J. A. Ferreira, C. Capela, and J. D. Costa, Fiber. Polym., 11, 1181 (2010).

    Article  CAS  Google Scholar 

  16. George Wypych, “Handbook of Fillers”, Toronto-New York, 1999.

    Google Scholar 

  17. S. Ahmed and F. R. Jones, J. Mater. Sci., 25, 4933 (1990).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Capela.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira, N., Capela, C., Ferreira, J.M. et al. Effect of water and fiber length on the mechanical properties of polypropylene matrix composites. Fibers Polym 15, 1017–1022 (2014). https://doi.org/10.1007/s12221-014-1017-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-014-1017-y

Keywords

Navigation