Skip to main content
Log in

Detection of pathogenic clostridia in biogas plant wastes

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

As the number of biogas plants has grown rapidly in the last decade, the amount of potentially contaminated wastes with pathogenic Clostridium spp. has increased as well. This study reports the results from examining 203 biogas plant wastes (BGWs). The following Clostridium spp. with different frequencies could be isolated via a new enrichment medium (Krüne medium) and detected by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS): Clostridium perfringens (58 %) then Clostridium bifermentans (27 %), Clostridium tertium (23 %) and Clostridium butyricum (19 %), Clostridium cadaveris (15 %), Clostridium parapurificum (6 %), Clostridium glycolicum (5 %), Clostridium baratii (4 %), Clostridium sporogenes (2 %), Clostridium sordellii (1 %) and Clostridium subterminale (0.5 %). The mean most probable number (MPN) count of sulfite reducing bacteria was between 103 and 104/mL, and the higher the MPN, the more pathogenic Clostridium spp. were present. Also, real-time PCR was used to be compared with culture method for C. perfringens, C. bifermentans, C. butyricum, C. sporogenes/Clostridium botulinum and C. sordellii. Although real-time PCR was more sensitive than the culture method, both systems improve the recovery rate but in different ways and are useful to determine pathogenic clostridia in biogas plants. In conclusion, BGWs could present a biohazard risk of clostridia for humans and animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Albini S, Brodard I, Jaussi A, Wollschlaeger N, Frey J, Miserez R, Abril C (2008) Real-time multiplex PCR assays for reliable detection of Clostridium perfringens toxin genes in animal isolates. Vet Microbiol 127:179–185

    Article  CAS  PubMed  Google Scholar 

  • Bagge E, Sahlström L, Albihn A (2005) The effect of hygienic treatment on the microbial flora of biowaste at biogas plants. Water Res 39:4879–4886

    Article  CAS  PubMed  Google Scholar 

  • Bagge E, Persson M, Johansson KE (2010) Diversity of spore-forming bacteria in cattle manure, slaughterhouse waste and samples from biogas plants. J Appl Microbiol 109:1549–1565

    CAS  PubMed  Google Scholar 

  • Baums CG, Schotte U, Amtsberg G, Goethe R (2004) Diagnostic multiplex PCR for toxin genotyping of Clostridium perfringens isolates. Vet Microbiol 100:11–16

    Article  CAS  PubMed  Google Scholar 

  • Bhatnagar J, DeLeon-Carnes M, Kellar KL, Bandyopadhyay K, Antoniadou ZA, Shieh WJ, Paddock CD, Zaki SR (2012) Rapid, simultaneous detection of Clostridium sordellii and Clostridium perfringens in archived tissues by a novel PCR-Based microsphere assay: diagnostic implications for pregnancy-associated toxic shock syndrome cases. Infect Dis Obstet Gyn. doi:10.1155/2012/972845

    Google Scholar 

  • Braun R, Brachtl E, Grasmug M (2003) Codigestion of proteinaceous industrial waste. Appl Biochem Biotechnol 109:139–153

    Article  CAS  PubMed  Google Scholar 

  • Collins MD, Lawson PA, Willams A, Cordoba JJ, Fernandez-Garayzabal J, Garcia P, Cai J, Hippe I, Farrow AE (1994) The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Internat J Syst Bacteriol 44:812–826

    Article  CAS  Google Scholar 

  • De Medici D, Anniballi F, Wyatt GM, Lindström M, Messelhäußer U, Aldus CF, Delibato E, Korkeala H, Peck MW, Fenicia L (2009) Multiplex PCR for detection of botulinum neurotoxin-producing clostridia in clinical food and environmental samples. Appl Environ Microbiol 75:6457–6461

    Article  PubMed Central  PubMed  Google Scholar 

  • EC (1774/2002) Regulation (EC) No 1774/2002 of the European Parliament and of the Council of 3 October 2002 laying down health rules concerning animal by-products not intended for human consumption. Available at: <http://europa.eu/legislation_summaries/food_safety/animal_nutrition/f81001_en.ht> [accessed 28 April 2014]

  • Fachverband Biogas e.V. 2013. Biogas Segment Statistics (2013) Development of the number of biogas plants and the total installed electric output in megawatt [MW] (as of 11/2013). Available at: <http://www.biogas.org/edcom/webfvb.nsf/id/DE_Branchenzahlen/$file/13-11-11_Biogas%20Branchenzahlen_2013-2014.pdf> [accessed 28 April 2014]

  • Kikuchi E, Miyamoto Y, Narushima S, Itoh K (2002) Design of species-specific primers to identify 13 species of Clostridium harbored in human intestinal tracts. Microbiol Immunol 46:353–358

    Article  CAS  PubMed  Google Scholar 

  • Krause L, Diaz NN, Edwards RA, Gartemann KH, Krömeke H, Neuweger H, Pühler A, Runte KJ, Schlüter A, Stoye J, Szczepanowski R, Tauch A, Goesmann A (2008) Taxonomic composition and gene content of a methane-producing microbial community isolated from a biogas reactor. J Biotechnol 136:91–101

    Article  CAS  PubMed  Google Scholar 

  • Krüger M, Shehata AA, Schrödl W, Rodloff A (2013) Glyphosate suppresses the antagonistic effect of Enterococcus spp. on Clostridium botulinum. Anaerobe 20:74–78

    Article  PubMed  Google Scholar 

  • Lebuhn M, Effenberger M, Garces G, Gronauer A, Wilderer PA (2005) Hygienization by anaerobic digestion: comparison between evaluation by cultivation and quantitative real-time PCR. Water Sci Technol 52:93–99

    CAS  PubMed  Google Scholar 

  • Maranon E, Castrillon L, Fernandez JJ, Fernandez Y, Pelaez AI, Sanchez J (2006) Anaerobic mesophilic treatment of cattle manure in an upflow anaerobic sludge blanket reactor with prior pasteurization. J Air Waste Manag Assoc 56:137–143

    Article  CAS  PubMed  Google Scholar 

  • Sahlström L, Bagge E, Emmoth E, Holmqvist A, Danielsson-Tham ML, Albihn A (2008) A laboratory study of survival of selected microorganisms after heat treatment of biowaste used in biogas plants. Bioresource Tech 99:7859–7865

    Article  Google Scholar 

  • Shehata AA, Sultan H, Hafez MH, Krüger M (2013a) Safety efficacy of a metabolic drift live attenuated Salmonella Gallinarum vaccine against fowl typhoid. Avian Dis 57:29–35

    Article  PubMed  Google Scholar 

  • Shehata AA, Schrödl W, Neuhaus J, Krüger M (2013b) Antagonistic effect of different bacteria on Clostridium botulinum types A, B, C, D and E in vitro. Vet Rec 12:47

    Article  Google Scholar 

  • Shehata AA, Schrödl W, Aldin AA, Hafez MH, Krüger M (2013c) The effect of glyphosate on potential pathogens and beneficial members of poultry microbiota in vitro. Curr Microbiol 66:350–8

    Article  CAS  PubMed  Google Scholar 

  • Stackebrandt E, Kramer I, Swiderski J, Hippe H (1999) Phylogenetic basis for a taxonomic dissection of the genus Clostridium. FEMS Immunol Med Microbiol 24:253–258

    Article  CAS  PubMed  Google Scholar 

  • Takeshi K, Fujinaga Y, Inoue K, Nakajima H, Oguma K, Ueno T, Sunagawa H, Ohyama T (1996) Simple method for detection of Clostridium botulinum type A to F neurotoxin genes by ploymerase chain reaction. Microbiol Immunol 40:5–11

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The study was supported by the Federal Ministry of Economy and Technology of Germany, KF 2867102AJ1. Also, the authors would like to thank BioCheck GmbH (Holzhausen, Germany) for their kind help regarding the PCR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Awad A. Shehata.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neuhaus, J., Shehata, A.A. & Krüger, M. Detection of pathogenic clostridia in biogas plant wastes. Folia Microbiol 60, 15–19 (2015). https://doi.org/10.1007/s12223-014-0334-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-014-0334-2

Keywords

Navigation