Skip to main content
Log in

Groundwater Discharge as a Source of Dissolved Carbon and Greenhouse Gases in a Subtropical Estuary

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Groundwater may be highly enriched in dissolved carbon species, but its role as a source of carbon to coastal waters is still poorly constrained. Exports of deep and shallow groundwater-derived dissolved carbon species from a small subtropical estuary (Korogoro Creek, Australia, latitude −31.0478°, longitude 153.0649°) were quantified using a radium isotope mass balance model (233Ra and 224Ra, natural groundwater tracers) under two hydrological conditions. In addition, air-water exchange of carbon dioxide and methane in the estuary was estimated. The highest carbon inputs to the estuary were from deep fresh groundwater in the wet season. Most of the dissolved carbon delivered by groundwater and exported from the estuary to the coastal ocean was in the form of dissolved inorganic carbon (DIC; 687 mmol m−2 estuary day−1; 20 mmol m−2 catchment day−1, respectively), with a large export of alkalinity (23 mmol m−2 catchment day−1). Average water to air flux of CO2 (869 mmol m−2 day−1) and CH4 (26 mmol m−2 day−1) were 5- and 43-fold higher, respectively, than the average global evasion in estuaries due to the large input of CO2- and CH4-enriched groundwater. The groundwater discharge contribution to carbon exports from the estuary for DIC, dissolved organic carbon (DOC), alkalinity, CO2, and CH4 was 22, 41, 3, 75, and 100 %, respectively. The results show that CO2 and CH4 evasion rates from small subtropical estuaries surrounded by wetlands can be extremely high and that groundwater discharge had a major role in carbon export and evasion from the estuary and therefore should be accounted for in coastal carbon budgets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abril, G., and N. Iversen. 2002. Methane dynamics in a shallow non-tidal estuary (Randers Fjord, Denmark). Marine Ecology: Progress Series 230: 171–181.

    Article  Google Scholar 

  • Abril, G., S. Bouillon, F. Darchambeau, C.R. Teodoru, T.R. Marwick, F. Tamooh, F. Ochieng Omengo, N. Geeraert, L. Deirmendjian, P. Polsenaere, and A.V. Borges. 2015. Technical note: large overestimation of pCO2 calculated from pH and alkalinity in acidic, organic-rich freshwaters. Biogeosciences 12(1): 67–78.

    Article  CAS  Google Scholar 

  • Adame, M.F., and C.E. Lovelock. 2011. Carbon and nutrient exchange of mangrove forests with the coastal ocean. Hydrobiologia 663: 23–50.

    Article  CAS  Google Scholar 

  • Atkins, M.L., I.R. Santos, S. Ruiz-Halpern, and D.T. Maher. 2013. Carbon dioxide dynamics driven by groundwater discharge in a coastal floodplain creek. Journal of Hydrology 493: 30–42.

    Article  CAS  Google Scholar 

  • Bauer, J., and T. Bianchi. 2011. Dissolved organic carbon cycling and transformation. Treatise on Estuarine and Coastal Science 5: 7–67.

    Article  Google Scholar 

  • Bergamaschi, B.A., D.P. Krabbenhoft, G.R. Aiken, E. Patino, D.G. Rumbold, and W.H. Orem. 2012. Tidally driven export of dissolved organic carbon, total mercury, and methylmercury from a mangrove-dominated estuary. Environmental Science and Technology 46: 1371–1378.

    Article  CAS  Google Scholar 

  • Bianchi, T.S. 2007. Biogeochemistry of estuaries. New York: Oxford University Press.

    Google Scholar 

  • Borges, A.V., and G. Abril. 2011. Carbon dioxide and methane dynamics in estuaries. In Treatise on estuarine and coastal science, vol. 5, ed. E. Wolanski and D.S. McLusky, 119–161. Waltham: Academic.

    Chapter  Google Scholar 

  • Borges, A., B. Delille, L.-S. Schiettecatte, F. Gazeau, G. Abril, and M. Frankignoulle. 2004. Gas transfer velocities of CO2 in three European estuaries (Randers Fjord, Scheldt and Thames). Limnology and Oceanography 49: 1630–1641.

    Article  CAS  Google Scholar 

  • Bouillon, S., et al. 2007. Importance of intertidal sediment processes and porewater exchange on the water column biogeochemistry in a pristine mangrove creek (Ras Dege, Tanzania). Biogeosciences Discussions 4: 317–348.

    Article  Google Scholar 

  • Bouillon, S. et al. 2008. Mangrove production and carbon sinks: a revision of global budget estimates. Global Biogeochemical Cycles 22. doi: 10.1029/2007GB003052

  • Burnett, W.C., et al. 2006. Quantifying submarine groundwater discharge in the coastal zone via multiple methods. The Science of the Total Environment 367: 498–543.

    Article  CAS  Google Scholar 

  • Burnett, W.C., R.N. Peterson, I.R. Santos, and R.W. Hicks. 2010. Use of automated radon measurements for rapid assessment of groundwater flow into Florida streams. Journal of Hydrology 380: 298–304.

    Article  CAS  Google Scholar 

  • Cable, J.E., G.C. Bugna, W.C. Burnett, and J.P. Chanton. 1996. Application of 222Rn and CH4 for assessment of groundwater discharge to the coastal ocean. Limnology and Oceanography 41: 1347–1353.

    Article  Google Scholar 

  • Cai, W.J. 2003. The geochemistry of dissolved inorganic carbon in a surficial groundwater aquifer in North Inlet, South Carolina, and the carbon fluxes to the coastal ocean. Geochimica et Cosmochimica Acta 67: 631–637.

    Article  CAS  Google Scholar 

  • Cai, W.-J. 2011. Estuarine and coastal ocean carbon paradox: CO2 sinks or sites of terrestrial carbon incineration? Annual Review of Marine Science 3: 123–145.

    Article  Google Scholar 

  • Cai, Y., L. Guo, and T.A. Douglas. 2008. Temporal variations in organic carbon species and fluxes from the Chena River, Alaska. Limnology and Oceanography 53: 1408–1419.

    Article  CAS  Google Scholar 

  • Call, M., et al. 2015. Spatial and temporal variability of carbon dioxide and methane fluxes over semi-diurnal and spring-neap-spring timescales in a mangrove creek. Geochimica et Cosmochimica Acta 150: 211–225.

    Article  CAS  Google Scholar 

  • Chapagain, S.K., V.P. Pandey, S. Shrestha, T. Nakamura, and F. Kazama. 2010. Assessment of deep groundwater quality in Kathmandu valley using multivariate statistical techniques. Water, Air, and Soil Pollution 210: 277–288.

    Article  CAS  Google Scholar 

  • Charette, M.A., and M.C. Allen. 2006. Precision ground water sampling in coastal aquifers using a direct‐push, Shielded‐Screen Well‐Point System. Groundwater Monitoring & Remediation 26: 87–93.

    Article  CAS  Google Scholar 

  • Chen, C.-T.A., T.-H. Huang, Y.-C. Chen, Y. Bai, X. He, and Y. Kang. 2012. Air–sea exchanges of CO2 in the world’s coastal seas. Biogeosciences 10: 6509–6544.

    Article  Google Scholar 

  • Constantz, J., C.L. Thomas, and G. Zellweger. 1994. Influence of diurnal variations in stream temperature on streamflow loss and groundwater recharge. Water Resources Research 30: 3253–3264.

    Article  Google Scholar 

  • Cyronak, T., I. R. Santos, A. McMahon, and B. D. Eyre. 2013. Carbon cycling hysteresis in permeable carbonate sands over a diel cycle: Implications for ocean acidification. Limnology & Oceanography, 58(1): 131–143.

  • Cyronak, T., I.R. Santos, D.V. Erler, D.T. Maher, and B.D. Eyre. 2014. Drivers of pCO2 variability in two contrasting coral reef lagoons: the influence of submarine groundwater discharge. Global Biogeochemical Cycles 28: 398–414.

    Article  CAS  Google Scholar 

  • De La Paz, M., A. Gómez-Parra, and J. Forja. 2007. Inorganic carbon dynamic and air–water CO2 exchange in the Guadalquivir Estuary (SW Iberian Peninsula). Journal of Marine Systems 68: 265–277.

    Article  Google Scholar 

  • de Sieyes, N.R., K.M. Yamahara, B.A. Layton, E.H. Joyce, and A.B. Boehm. 2008. Submarine discharge of nutrient-enriched fresh groundwater at Stinson Beach, California is enhanced during neap tides. Limnology and Oceanography 53: 1434–1445.

    Article  Google Scholar 

  • Dhar, R.K., Y. Zhenga, A. van Geen, Z. Cheng, M. Shanewaz, M. Shamsudduha, M.A. Hoque, M.W. Rahman, and K.M. Ahmed. 2008. Temporal variability of groundwater chemistry in shallow and deep aquifers of Araihazar, Bangladesh. Journal of Contaminant Hydrology 99: 97–111.

    Article  CAS  Google Scholar 

  • Dickson, A.G. 1990. Standard potential of the reaction: AgCl (s)+ 12H2 (g) = Ag (s)+ HCl (aq), and the standard acidity constant of the ion HSO4 in synthetic sea water from 273.15 to 318.15 K. Journal of Chemical Thermodynamics 22: 113–127.

    Article  CAS  Google Scholar 

  • Dixon, J.L., J.R. Helms, R.J. Kieber, and G.B. Avery. 2014. Biogeochemical alteration of dissolved organic material in the Cape Fear River Estuary as a function of freshwater discharge. Estuarine, Coastal and Shelf Science 149: 273–282.

    Article  CAS  Google Scholar 

  • Dorsett, A., A. Jennifer Cherrier, J.B. Martin, and J.E. Cable. 2011. Assessing hydrologic and biogeochemical controls on pore-water dissolved inorganic carbon cycling in a subterranean estuary: A 14C and 13C mass balance approach. Marine Chemistry 127: 76–89.

    Article  CAS  Google Scholar 

  • Dürr, H.H., G.G. Laruelle, C.M. Van Kempen, C.P. Slomp, M. Meybeck, and H. Middelkoop. 2011. Worldwide typology of nearshore coastal systems: defining the estuarine filter of river inputs to the oceans. Estuaries and Coasts 34: 441–458.

    Article  Google Scholar 

  • Faber, P.A., V. Evrard, R.J. Woodland, I.C. Cartwright, and P.L. Cook. 2014. Pore-water exchange driven by tidal pumping causes alkalinity export in two intertidal inlets. Limnology and Oceanography 59: 1749–1763.

    Article  CAS  Google Scholar 

  • Ferrón, S., T. Ortega, A. Gómez-Parra, and J. Forja. 2007. Seasonal study of dissolved CH4, CO2and N2O in a shallow tidal system of the bay of Cádiz (SW Spain). Journal of Marine Systems 66: 244–257.

    Article  Google Scholar 

  • Frankignoulle, M., I. Bourge, and R. Wollast. 1996. Atmospheric CO2 fluxes in a highly polluted estuary (the Scheldt). Limnology and Oceanography 41: 365–369.

    Article  CAS  Google Scholar 

  • Frankignoulle, M., et al. 1998. Carbon dioxide emission from European estuaries. Science 282: 434–436.

    Article  CAS  Google Scholar 

  • Gagan, M.K., L.K. Ayliffe, B.N. Opdyke, D. Hopley, H. Scott‐Gagan, and J. Cowley. 2002. Coral oxygen isotope evidence for recent groundwater fluxes to the Australian Great Barrier Reef. Geophysical Research Letters 29: 43-1–43-4.

    Article  Google Scholar 

  • Gatland, J.R., I.R. Santos, D.T. Maher, T. Duncan, and D.V. Erler. 2014. Carbon dioxide and methane emissions from an artificially drained coastal wetland during a flood: Implications for wetland global warming potential. Geophysical Research: Biogeosciences 119: 1698–1716.

    CAS  Google Scholar 

  • Gazeau, F., et al. 2005. Planktonic and whole system metabolism in a nutrient-rich estuary (the Scheldt estuary). Estuaries and Coasts 28: 868–883.

    Article  CAS  Google Scholar 

  • Gleeson, J., I.R. Santos, D.T. Maher, and L. Golsby-Smith. 2013. Groundwater–surface water exchange in a mangrove tidal creek: evidence from natural geochemical tracers and implications for nutrient budgets. Marine Chemistry 156: 27–37.

    Article  CAS  Google Scholar 

  • Goñi, M.A., and I.R. Gardner. 2003. Seasonal dynamics in dissolved organic carbon concentrations in a coastal water-table aquifer at the forest-marsh interface. Aquatic Geochemistry 9: 209–232.

    Article  Google Scholar 

  • Hunt, C.W., J.E. Salisbury, and D. Vandermark. 2011. Contribution of non-carbonate anions to total alkalinity and overestimation of pCO2 in New England and New Brunswick rivers. Biogeosciences 8: 3069–3076.

    Article  CAS  Google Scholar 

  • Kim, G., J.-S. Kim, and D.-W. Hwang. 2011. Submarine groundwater discharge from oceanic islands standing in oligotrophic oceans: Implications for global biological production and organic carbon fluxes. Limnology and Oceanography 56: 673–682.

    Article  CAS  Google Scholar 

  • Lee, J.-M., and G. Kim. 2006. A simple and rapid method for analyzing radon in coastal and ground waters using a radon-in-air monitor. Journal of Environmental Radioactivity 89: 219–228.

    Article  CAS  Google Scholar 

  • Linto, N., J. Barnes, R. Ramachandran, J. Divia, P. Ramachandran, and R. Upstill-Goddard. 2014. Carbon dioxide and methane emissions from mangrove-associated waters of the Andaman Islands, Bay of Bengal. Estuaries and Coasts 37: 381–398.

    Article  CAS  Google Scholar 

  • Liu, Q., et al. 2012. How significant is submarine groundwater discharge and its associated dissolved inorganic carbon in a river-dominated shelf system? Biogeosciences 9: 1777–1795.

    Article  CAS  Google Scholar 

  • Liu, Q., M.A. Charette, P.B. Henderson, D.C. Mccorkle, W. Martin, and M. Dai. 2014. Effect of submarine groundwater discharge on the coastal ocean inorganic carbon cycle. Limnology and Oceanography 59: 1529–1554.

    Article  CAS  Google Scholar 

  • Macklin, P.A., D.T. Maher, and I.R. Santos. 2014. Estuarine canal estate waters: hotspots of CO2 outgassing driven by enhanced groundwater discharge? Marine Chemistry 167: 82–92.

    Article  CAS  Google Scholar 

  • Maher, D.T., and B.D. Eyre. 2010. Benthic fluxes of dissolved organic carbon in three temperate Australian estuaries: Implications for global estimates of benthic DOC fluxes. Journal of Geophysical Research: Biogeosciences (2005–2012) 115, G04039. doi:10.1029/2010JG001433.

    Article  Google Scholar 

  • Maher, D., and B.D. Eyre. 2011. Insights into estuarine benthic dissolved organic carbon (DOC) dynamics using δ13C-DOC values, phospholipid fatty acids and dissolved organic nutrient fluxes. Geochimica et Cosmochimica Acta 75: 1889–1902.

    Article  CAS  Google Scholar 

  • Maher, D and B.D. Eyre 2012. Carbon budgets for three autotrophic Australian estuaries: Implications for global estimates of the coastal air‐water CO2 flux. Global Biogeochemical Cycles 26. doi: 10.1029/2011GB004075.

  • Maher, D.T., I.R. Santos, L. Golsby-Smith, J. Gleeson, and B.D. Eyre. 2013a. Groundwater-derived dissolved inorganic and organic carbon exports from a mangrove tidal creek: The missing mangrove carbon sink? Limnology and Oceanography 58: 475–488.

    CAS  Google Scholar 

  • Maher, D.T., et al. 2013b. Novel use of cavity ring-down spectroscopy to investigate aquatic carbon cycling from microbial to ecosystem scales. Environmental Science and Technology 47: 12938–12945.

    Article  CAS  Google Scholar 

  • Maher, D.T., K. Cowley, I.R. Santos, P. Macklin, and B.D. Eyre. 2015. Methane and carbon dioxide dynamics in a subtropical estuary over a diel cycle: insights from automated in situ radioactive and stable isotope measurements. Marine Chemistry 168: 69–79.

    Article  CAS  Google Scholar 

  • Millero, F.J., T.B. Graham, F. Huang, H. Bustos-Serrano, and D. Pierrot. 2006. Dissociation constants of carbonic acid in seawater as a function of salinity and temperature. Marine Chemistry 100: 80–94.

    Article  CAS  Google Scholar 

  • Miyajima, T., Y. Tsuboi, Y. Tanaka, and I. Koike. 2009. Export of inorganic carbon from two Southeast Asian mangrove forests to adjacent estuaries as estimated by the stable isotope composition of dissolved inorganic carbon. Journal of Geophysical Research: Biogeosciences. (2005–2012) 114. doi: 10.1029/2008JG000861

  • Moore, W.S. 2010. The effect of submarine groundwater discharge on the ocean. Annual Review of Marine Science 2: 59–88.

    Article  Google Scholar 

  • Moore, W.S., and R. Arnold. 1996. Measurement of 223Ra and 224Ra in coastal waters using a delayed coincidence counter. Journal of Geophysical Research: Oceans (1978–2012) 101: 1321–1329.

    Article  CAS  Google Scholar 

  • Moore, W.S., Blanton J.O., and Joye S.B. 2006. Estimates of flushing times, submarine groundwater discharge, and nutrient fluxes to Okatee Estuary, South Carolina. Journal Geophysical Research: Oceans (1978–2012) 111. doi: 10.1029/2005JC003041.

  • Neubauer, S.C., and J.P. Megonigal. 2015. Moving beyond global warming potentials to quantify the climatic role of ecosystems. Ecosystems 18(6): 1000–1013.

    Article  Google Scholar 

  • Nirmal Rajkumar, A., J. Barnes, R. Ramesh, R. Purvaja, and R. Upstill-Goddard. 2008. Methane and nitrous oxide fluxes in the polluted Adyar River and estuary, SE India. Marine Pollution Bulletin 56: 2043–2051.

    Article  CAS  Google Scholar 

  • Noriega, C., and M. Araujo. 2014. Carbon dioxide emissions from estuaries of northern and northeastern Brazil. Scientific Reports 4: 6164.

    Article  CAS  Google Scholar 

  • O’Reilly, C., I.R. Santos, T. Cyronak, A. McMahon and D.T. Maher. 2015. Nitrous oxide and methane dynamics in a coral reef lagoon driven by porewater exchange: Insights from automated high frequency observations. Geophysical Research Letters. 42(8), doi: 10.1002/2015GL063126.

  • Panneer Selvam, B., S. Natchimuthu, L. Arunachalam, and D. Bastviken. 2014. Methane and carbon dioxide emissions from inland waters in India—implications for large scale greenhouse gas balances. Global Change Biology 20: 3397–3407.

    Article  Google Scholar 

  • Pelletier, G., E. Lewis, and D. Wallace. 2007. CO 2 Sys. xls: a calculator for the CO 2 system in seawater for Microsoft Excel/VBA. Olympia: Washington State Department of Ecology/Brookhaven National Laboratory.

    Google Scholar 

  • Peterson, R.N., W.C. Burnett, N. Dimova, and I.R. Santos. 2009. Comparison of measurement methods for radium-226 on manganese-fiber. Limnology and Oceanography: Methods 7: 196–205.

    Article  CAS  Google Scholar 

  • Porubsky, W.P., N.B. Weston, W.S. Mooreb, C. Ruppel, and S.B. Joye. 2014. Dynamics of submarine groundwater discharge and associated fluxes of dissolved nutrients, carbon, and trace gases to the coastal zone (Okatee River estuary, South Carolina). Geochimica et Cosmochimica Acta 131: 81–97.

    Article  CAS  Google Scholar 

  • Raymond, P.A., J.E. Bauer, and J.J. Cole. 2000. Atmospheric CO2 evasion, dissolved inorganic carbon production, and net heterotrophy in the York River estuary. Limnology and Oceanography 45: 1707–1717.

    Article  CAS  Google Scholar 

  • Rodríguez-Murillo, J., J. Zobrist, and M. Filella. 2015. Temporal trends in organic carbon content in the main Swiss rivers, 1974–2010. The Science of the Total Environment 502: 206–217.

    Article  Google Scholar 

  • Ruprecht, J.E., and W.A. Timms. 2010. Hat Head Effluent Disposal Scheme – Ongoing Monitoring Results to September 2010. WRL Technical Report.

  • Sadat-Noori, M., I. Santos, D. Maher, C. Sanders, and L. Sanders. 2015. Groundwater discharge into an estuary using spatially distributed radon time series and radium isotopes. Journal of Hydrology 528: 703–719.

    Article  CAS  Google Scholar 

  • Sanders, C.J., I.R. Santos, D.T. Maher, M. Sadat-Noori, B. Schnetger, and H.-J. Brumsack. 2015. Dissolved iron exports from an estuary surrounded by coastal wetlands: can small estuaries be a significant source of Fe to the ocean? Marine Chemistry 176: 75–82.

    Article  CAS  Google Scholar 

  • Santos, I.R., W.C. Burnett, T. Dittmar, I.G.N.A. Suryaputra, and J. Chanton. 2009. Tidal pumping drives nutrient and dissolved organic matter dynamics in a Gulf of Mexico subterranean estuary. Geochimica et Cosmochimica Acta 73: 1325–1339.

    Article  CAS  Google Scholar 

  • Santos, I.R., D.T. Maher, and B.D. Eyre. 2012a. Coupling automated radon and carbon dioxide measurements in coastal waters. Environmental Science and Technology 46: 7685–7691.

    Article  CAS  Google Scholar 

  • Santos, I.R., P.L.M. Cook, L. Rogers, J. De Weys, and B.D. Eyre. 2012b. The “salt wedge pump”: convection-driven pore-water exchange as a source of dissolved organic and inorganic carbon and nitrogen to an estuary. Limnology and Oceanography 57: 1415–1426.

    Article  CAS  Google Scholar 

  • Santos, I.R., et al. 2015. Porewater exchange as a driver of carbon dynamics across a terrestrial-marine transect: insights from coupled 222Rn and pCO2 observations in the German Wadden Sea. Marine Chemistry 171: 10–20.

    Article  CAS  Google Scholar 

  • Seitzinger, S., J. Harrison, E. Dumont, A.H. Beusen, and A. Bouwman. 2005. Sources and delivery of carbon, nitrogen, and phosphorus to the coastal zone: An overview of Global Nutrient Export from Watersheds (NEWS) models and their application. Global Biogeochemical Cycles 19. doi: 10.1029/2005GB002606.

  • Stewart, B.T., I.R. Santos, D.R. Tait, P.A. Macklin, and D.T. Maher. 2015. Submarine groundwater discharge and associated fluxes of alkalinity and dissolved carbon into Moreton Bay (Australia) estimated via radium isotopes. Marine Chemistry 174(20): 1–12.

    Article  CAS  Google Scholar 

  • St‐Jean, G. 2003. Automated quantitative and isotopic (13C) analysis of dissolved inorganic carbon and dissolved organic carbon in continuous‐flow using a total organic carbon analyser. Rapid Communications in Mass Spectrometry 17: 419–428.

    Article  Google Scholar 

  • Striegl, R.G., M.M. Dornblaser, G.R. Aiken, K.P. Wickland, and P.A. Raymond. 2007. Carbon export and cycling by the Yukon, Tanana, and Porcupine rivers, Alaska, 2001–2005. Water Resources Research. 43. doi: 10.1029/2006WR005201.

  • Tamše, S., N. Ogrinc, L.M. Walter, D. Turk, and J. Faganeli. 2014. River sources of dissolved inorganic carbon in the gulf of Trieste (N Adriatic): stable carbon isotope evidence. Estuaries and Coasts 38(1): 1–14.

    Google Scholar 

  • Tank, S.E. et al. 2012. A land-to-ocean perspective on the magnitude, source and implication of DIC flux from major Arctic rivers to the Arctic Ocean. Global Biogeochemical Cycles 26. doi: 10.1029/2011GB004192.

  • Wang, Z.A., and W.-J. Cai. 2004. Carbon dioxide degassing and inorganic carbon export from a marsh-dominated estuary (the Duplin River): a marsh CO2 pump. Limnology and Oceanography 49: 341–354.

    Article  CAS  Google Scholar 

  • Wang, G., et al. 2015. Net subterranean estuarine export fluxes of dissolved inorganic C, N, P, Si, and total alkalinity into the Jiulong River estuary, China. Geochimica et Cosmochimica Acta 149: 103–114.

    Article  CAS  Google Scholar 

  • Wanninkhof, R. 1992. Relationship between wind speed and gas exchange over the ocean. J. Geophys. Res.: Oceans (1978–2012) 97: 7373–7382.

    Article  Google Scholar 

  • Weinstein, Y., W. Burnett, P. Swarzenski, Y. Shalem, Y. Yechieli, and B. Herut. 2007. Role of aquifer heterogeneity in fresh groundwater discharge and seawater recycling: An example from the Carmel coast, Israel. Journal of Geophysical Research: Oceans (1978–2012) 112. DOI: 10.1029/2007JC004112.

  • Weiss, R.F. 1974. Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Marine Chemistry 2: 203–215.

    Article  CAS  Google Scholar 

  • Wiesenburg, D.a., and N.L. Guinasso. 1979. Equilibrium solubilities of methane, carbon monoxide, and hydrogen in water and sea water. Journal of Chemical and Engineering Data 24(4): 356–360.

    Article  CAS  Google Scholar 

  • Winter, P.E., T.A. Schlacherl, and D. Baird. 1996. Carbon flux between an estuary and the ocean: a case for outwelling. Hydrobiologia 337: 123–132.

    Article  CAS  Google Scholar 

  • Zhang, G., J. Zhang, S. Liu, J. Ren, J. Xu, and F. Zhang. 2008. Methane in the Changjiang (Yangtze River) Estuary and its adjacent marine area: riverine input, sediment release and atmospheric fluxes. Biogeochemistry 91: 71–84.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Christian Sanders, Luciana Sanders, Paul Macklin, Ashley McMahon, Benjamin Stewart, Jennifer Taylor, and Judith Rosentreter for their support during field campaigns. IRS and DTM are funded through Australian Research Council DECRA Fellowships (DE140101733 and DE150100581). We acknowledge support from the Australian Research Council (DP120101645 and LE120100156). We would also like to acknowledge the Associate Editor Alberto Borges and two anonymous reviewers for their constructive comments which helped strengthen our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmood Sadat-Noori.

Additional information

Communicated by Alberto Vieira Borges

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadat-Noori, M., Maher, D.T. & Santos, I.R. Groundwater Discharge as a Source of Dissolved Carbon and Greenhouse Gases in a Subtropical Estuary. Estuaries and Coasts 39, 639–656 (2016). https://doi.org/10.1007/s12237-015-0042-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-015-0042-4

Keywords

Navigation