Skip to main content
Log in

A Modeling Approach to Assess the Key Factors in the Evolution of Coastal Systems: the Ebro North Hemidelta Case

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

One-Line shoreline evolution models have been used as a tool to understand and forecast long-term coastal evolution. However, in some coastal environments, where the influence of the wind is important, the limitations of existing models preclude its direct application to characterize its effect on sediment transport processes. To fill this knowledge gap, we have developed a shoreline evolution model that includes the effect of wind on longshore sediment transport and accounts for beach-dune sedimentary exchange due to aeolian transport. The model produces quantitative estimates of sediment transport and exchanges rates alongshore, easing the assessment of the role of different forcing agents in coastline evolution. The model was applied to the Ebro north hemidelta coast. The results are used to discuss the relative importance of the wind interaction in the evolution of different coastline stretches. Aeolian sand transport at Riumar Beach could cause coastal erosion. At the rectilinear coast, aeolian exchange does not seem to influence the shoreline evolution but the wind-current interaction does. The model provides valuable data when considering the approach to be taken regarding conservation measures. Alongshore aeolian sediment transport can be useful when designing and placing aeolian sediment traps. Conservation of the Ebro north hemidelta coast needs to focus on increasing the river sediment supply. The application herein presented can be regarded as a first step in understanding wave and wind coupling effects in shoreline evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ashton, A., and A. Murray. 2005. Delta simulations using a one-line model coupled with overwash. In Fifth Coastal Dynamics International Conference, ed. A. Sánchez-Arcilla, 1–13. Barcelona (Spain): American Society of Civil Engineers. doi:10.1061/40855(214)13.

    Google Scholar 

  • Bagnold, R.A. 1941. The physics of Blown Sand and Desert Dunes. Methuen, London: The physics of Blown Sand and Desert Dunes.

    Google Scholar 

  • Barrio-Parra, F., M. Ribeiro, I. Bosnic, R. Taborda, I. Rodriguez-Santalla, and J. Cascalho. 2013. Sediment budget at Fangar Spit (Ebro Delta, Spain): Matching short-term observations with long-term evolution. In 6th SCACR—International Short Course/Conference on Applied Coastal Research, 1–10. Portugal: Lisbon.

    Google Scholar 

  • Barrio-Parra, F., and I. Rodriguez-Santalla. 2013. Inclusión de estimaciones puntuales de transporte sólido longitudinal en el modelo conceptual de la flecha del Fangar (Delta del Ebro). In XII Jornadas Españolas de Ingeniería de Costas Y Puertos, 378–379. Cartagena, Spain: Autoridad Portuaria de Cartagena.

    Google Scholar 

  • Barrio-Parra, F., and I. Rodríguez-Santalla. 2016. Cellular automata to understand the behaviour of beach-dune systems: Application to El Fangar Spit active dune system (Ebro delta, Spain). Computational Geosciences 93: 55–62. doi:10.1016/j.cageo.2016.05.001.

    Article  Google Scholar 

  • Barrio-Parra, F., and I. Rodríguez-Santalla. 2014. A free cellular model of dune dynamics: application to el Fangar spit dune system (Ebro Delta, Spain). Computational Geosciences 62: 187–197.

    Article  Google Scholar 

  • Birkemeier, W.A. 1985. Field data on seaward limit of profile change. Journal of the Waterways. Port, Coastal Ocean Division III: 598–602.

  • Booji, N., R.C. Ris, and L.H. Holthuijsen. 1999. A third generation wave model for coastal regions, Part 1: Model description and validation. Journal of Geophysical Research 4: 7649–7666.

    Article  Google Scholar 

  • CUR. 1990. Manual on Artificial Beach Nourishment. Rotterdam: Balkema Press.

    Google Scholar 

  • Dean, R.G., Dalrymple, R.A., 2004. Coastal Processes with Engineering Applications. Cambridge University Press, Cambridge, UK.

  • Delgado-Fernandez, I. 2011. Meso-scale modelling of aeolian sediment input to coastal dunes. Geomorphology 130: 230–243. doi:10.1016/j.geomorph.2011.04.001.

    Article  Google Scholar 

  • Delgado-Fernandez, I. 2010. A review of the application of the fetch effect to modelling sand supply to coastal foredunes. Aeolian Research 2: 61–70. doi:10.1016/j.aeolia.2010.04.001.

    Article  Google Scholar 

  • Delgado-Fernandez, I., and R.G.D. Davidson-Arnott. 2011. Meso-scale aeolian sediment input to coastal dunes: The nature of aeolian transport events. Geomorphology 126: 217–232. doi:10.1016/j.geomorph.2010.11.005.

    Article  Google Scholar 

  • Fassardi, C., 2004. The transformation of deep water wave hindcasts to shallow water. In 8th International Workshop on Wave Hindcasting and Forecasting. Hawaii. http://www.waveworkshop.org/8thWaves/Papers/N4.pdf.

  • Flores-Aqueveque, V., S. Alfaro, R. Muñoz, J.A. Rutllant, S. Caquineau, J.P. Le Roux, and G. Vargas. 2010. Aeolian erosion and sand transport over the Mejillones Pampa in the coastal Atacama Desert of northern Chile. Geomorphology 120: 312–325. doi:10.1016/j.geomorph.2010.04.003.

    Article  Google Scholar 

  • Galloway, W.E. 1975. Process framework for describing the morphologic and stratigraphic evolution of deltaic depositional systems. In Deltas: Models for Exploration, ed. M.C. Broussand, 87–98. Houston, TX: Houston Geol. Soc.

    Google Scholar 

  • Guillen, J., 1992. Dinámica y balance sedimetario en los ambientes fluvial y litoral del Delta del Ebro. PhD Thesis, Universidad Politécnica de Cataluña, Barcelona (Spain).

  • Guillén, J., and A. Palanques. 1993. Longshore bar and trough systems in a microtidal, storm-wave dominated coast: the Ebro Delta (Northwestern Mediterranean). Marine Geology 115: 239–252.

    Article  Google Scholar 

  • Hallermeier, R. 1978. Uses for a calculated limit depth to beach erosion. In Proceedings of the Sixteenth Coastal Engineering Conference, 1493–1512. New York: American Society of Civil Engineers.

    Google Scholar 

  • Hesp, P.A. 1988. Surfzone, beach and foredune interactions on the Australian southeast coast. Journal of Coastal Research 15–25.

  • Inman, D., and R.A. Bagnold. 1963. Littoral Process. In The Sea, ed. M.N. Hill, 529–553. New York: Wiley-Interscience.

    Google Scholar 

  • Jiménez, J.a., A. Sancho-García, E. Bosom, H.I. Valdemoro, and J. Guillén. 2012. Storm-induced damages along the Catalan coast (NW Mediterranean) during the period 1958-2008. Geomorphology 143-144: 24–33. doi:10.1016/j.geomorph.2011.07.034.

    Article  Google Scholar 

  • Jimenez, J.A., 1996. Evolución costera en el Delta del Ebro. Un proceso a diferentes escalas de tiempo y espacio. PhD Thesis, Univ. Technol. Barcelona, Barcelona (Spain).

  • Jimenez, J.A., A. Sánchez-Acilla, H.I. Valdemoro, V. Gracia, and F. Nieto. 1997. Processes reshaping the Ebro delta. Marine Geology 144: 59–79. doi:10.1016/S0025-3227(97)00076-5.

    Article  Google Scholar 

  • Jimenez, J.A., and A. Sánchez-Arcilla. 2004. A long-term (decadal scale) evolution model for microtidal barrier systems. Coastal Engineering 51: 749–764. doi:10.1016/j.coastaleng.2004.07.007.

    Article  Google Scholar 

  • Jimenez, J.A., Sánchez-Arcilla, A., 1993. Medium-term coastal response at the Ebro delta, Spain. Mar. Geol. 114: 105–118. doi:10.1016/0025-3227(93)90042-T

  • Kaergaard, K., and J. Fredsoe. 2013a. Numerical modeling of shoreline undulations part 1: Constant wave climate. Coastal Engineering 1–13. doi:10.1016/j.coastaleng.2012.11.006.

  • Kaergaard, K., and J. Fredsoe. 2013b. A numerical shoreline model for shorelines with large curvature. Coastal Engineering 74: 19–32. doi:10.1016/j.coastaleng.2012.11.011.

    Article  Google Scholar 

  • Kaergaard, K., and J. Fredsoe. 2012. Numerical modeling of shoreline undulations part 2: Varying wave climate and comparison with observations. Coastal Engineering. doi:10.1016/j.coastaleng.2012.11.003.

    Google Scholar 

  • Kamphuis, J. 2000. Introduction to coastal engineering and management. In Advance Series on Ocean Engineering, vol 16. World Scientific, Singapore: Coastal Engineering.

    Google Scholar 

  • Kawamura, R. 1951. Study on sand movement by wind. Reports Phys. Sci. Res. Inst. Tokyo Univ. 5: 95–112.

    Google Scholar 

  • Komar, P.D., 1998. Beach processes and sedimentation, Second ed. Prentice Hall, New York, pp. 544.

  • Larson, M., L. Hoan, and H. Hanson. 2010. Direct Formula to Compute Wave Height and Angle at Incipient Breaking. J. Waterw. Port, Coastal: 119–123. doi:10.1061/(ASCE)WW.1943-5460.0000030.

  • Lettau, K., and H.H. Lettau. 1978. Experimental and micro-meteorological field studies of dune migration. In Exploring the World’s Driest Climate, ed. H.H. Lettau, and K. Lettau, 110–147. Madison (US-WI): University of Wisconsin-Madison, Institute for Environmental Studies.

    Google Scholar 

  • Mariñas, J.F., and L. Tejedor. 1986. Modelo hidrodinámico de simulación hidrodinámica del Delta del Ebro. In El Sistema Integrado Del Ebro, 157–172. Madrid (Spain): Hermes.

    Google Scholar 

  • Martínez, M.L., a Intralawan, G. Vázquez, O. Pérez-Maqueo, P. Sutton, and R. Landgrave. 2007. The coasts of our world: Ecological, economic and social importance. Ecological Economics 63: 254–272. doi:10.1016/j.ecolecon.2006.10.022.

    Article  Google Scholar 

  • Miot da Silva, G., and P. Hesp. 2010. Coastline orientation, aeolian sediment transport and foredune and dunefield dynamics of Moçambique Beach, Southern Brazil. Geomorphology 120: 258–278. doi:10.1016/j.geomorph.2010.03.039.

    Article  Google Scholar 

  • O’Brien, M.P., and B.D. Rindlaub. 1936. The Transportation of Sand by Wind. Civil Engineering 6: 325–327.

    Google Scholar 

  • Peña Olivas, J.M., A.I. Antón, A. Lechuga, and G. Diez. 2013. Profundidad de cierre en las costas españolas partiendo de datos reales de seguimientos. XII Jornadas Españolas de Ingeniería de Costas Y Puertos: 336–337.

  • Petersen, D., R. Deigaard, and J. Fredsøe. 2008. Modelling the morphology of sandy spits. Coastal Engineering 55: 671–684. doi:10.1016/j.coastaleng.2007.11.009.

    Article  Google Scholar 

  • Ribeiro, M., Barrio-Parra, F., Taborda, R., Cascalho, J., Bosnic, I., Rodríguez-Santalla, I., Sánchez García, M.J., 2012. Longshore drift: experimental and empirical predictors. The example of the Ebro Delta, in: Actas Das 2as Jornadas de Engenharia Hidrográfica. Instituto Hidrográfico, Lisboa, Portugal, pp. 271–274.

  • Ribeiro, M., Bosnic, I., Taborda, R., Cascalho, J., Rodríguez-Santalla, I., Sánchez García, M.J., 2011. Technical Report REMO I (Ebro Delta). Faculdade de Ciencias da Universidade de Lisboa, pp. 23. http://sandcode.fc.ul.pt/Ebro.html.

  • Rijn, L. Van. 1984. Sediment transport, part I: bed load transport. Journal of Hydraulic Engineering 110: 1431–1456.

    Article  Google Scholar 

  • Rodríguez-Santalla, I., 1999. Evolución geomorfológica del delta del Ebro y prognosis de su evolución. Departamento de Geografía. PhD Thesis, Universidad de Alcalá de Henares, Alcalá de Henares (Spain).

  • Rodríguez-Santalla, I., M.J. Sánchez-García, I. Montoya-Montes, D. Gómez-Ortiz, T. Martín-Crespo, and J. Serra-Raventos. 2009. Internal structure of the aeolian sand dunes of El Fangar spit, Ebro Delta (Tarragona, Spain). Geomorphology 104: 238–252. doi:10.1016/j.geomorph.2008.08.017.

    Article  Google Scholar 

  • Ruz, M.H., and C. Meur-Ferec. 2004. Influence of high water levels on aeolian sand transport: upper beach/dune evolution on a macrotidal coast, Wissant Bay, northern France. Geomorphology 60: 73–87. doi:10.1016/j.geomorph.2003.07.011.

    Article  Google Scholar 

  • Samaras, A.G., and C.G. Koutitas. 2014. Comparison of three longshore sediment transport rate formulae in shoreline evolution modeling near stream mouths. Ocean Engineering 92: 255–266. doi:10.1016/j.oceaneng.2014.10.005.

    Article  Google Scholar 

  • Sánchez-García, M.J., 2008. Evolución y análisis morfodinámico del campo dunar de la Flecha del Fangar (Delta del Ebro). PhD Thesis, Universidad Rey Juan Carlos, Madrid (Spain).

  • Sánchez-García, M.J., Rodríguez-Santalla, I., Montoya-Montes, I., 2007. Short term coastal dune evolution of Fangar Spit (Ebro Delta, Spain)., in: International Conference on Management and Restoration of Coastal Dunes. Santander.

  • Sawaragi, T. 1995. Coastal Engineering—Waves, Beaches. Wave-Structure Interactions: Elsevier.

    Google Scholar 

  • Sherman, D.J., B.O. Bauer, K.F. Nordstrom, and J.R. Allen. 1990. A tracer study of sediment transport in the vicinity of a groin: New York, USA. J. Coast. Res. 6: 427–438.

    Google Scholar 

  • Shields, A., 1936. Application of Similarity Principles and Turbulence Research to Bed-Load Movement. California Institute of Technology, Pasadena (Translate from German).

  • Short, A.D., and P.A. Hesp. 1982. Wave, beach and dune interactions in southeastern Australia. Marine Geology 48: 259–284. doi:10.1016/0025-3227(82)90100-1.

    Article  Google Scholar 

  • Suh, K., and C. Haraway. 1994. Calculation of tombolo in shoreline numerical model. Proc. 24th Int. Conf. Coatal Eng. ASCE: 2653–2667.

  • Sutherland, J., a.H. Peet, and R.L. Soulsby. 2004. Evaluating the performance of morphological models. Coastal Engineering 51: 917–939. doi:10.1016/j.coastaleng.2004.07.015.

    Article  Google Scholar 

  • Thieler, E.R., Himmelstoss, E.A., Zichichi, J.L., Ergul, A., 2008. Digital Shoreline Analysis System (DSAS) version 4.0—An ArcGIS extension for calculating shoreline change [WWW Document]. U.S. Geol. Surv. URL http://woodshole.er.usgs.gov/project-pages/DSAS/ (accessed 7.28.16).

  • Thomas, R.C., Frey, A.E., 2013. Shoreline change modeling using one-line models: General model comparison and literature review. Vicksburg, MS. doi:ERDC/CHL CHETN-II-55

  • Townsend, K.E., Thomas, R.C., Frey, A.E., 2014. Shoreline Change Modeling Using One-Line Models: Application and Comparison of GenCade, Unibest, and Litpack. Vicksburg, MS. doi:ERDC/CHL CHETN-IV-102

  • US Army Corps of Engineers. 2002. Coastal Engineering Manual (CEM). In Engineer Manual 1110-2-1100. Washington: D.C.

    Google Scholar 

  • Vericat, D., and R. Batalla. 2004. Efectos de las presas en la dinámica fluvial del curso bajo del río Ebro. Cuaternario y Geomorfol. 18: 37–50.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Barrio-Parra.

Additional information

Communicated by William Boicourt

Highlights

•A shoreline model considering wind related transport is presented.

•The relative importance of wave- and wind-related transport in shoreline evolution was assessed.

•Model results allow identifying conservation needs along the shoreline.

•Aeolian transport estimations alongshore could be useful in dune conservation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barrio-Parra, F., Rodríguez-Santalla, I., Taborda, R. et al. A Modeling Approach to Assess the Key Factors in the Evolution of Coastal Systems: the Ebro North Hemidelta Case. Estuaries and Coasts 40, 758–772 (2017). https://doi.org/10.1007/s12237-016-0183-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-016-0183-0

Keywords

Navigation