Skip to main content
Log in

Isolation, identification, and performance studies of a novel paraffin-degrading bacterium of Gordonia amicalis LH3

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

In this study, we describe the isolation and identification of a novel long-chain n-alkane degrading strain, Gordonia amicalis LH3. Under aerobic conditions, it utilized approximately 18.0% of paraffin (2% w/v) after 10 day of incubation, and the paraffin compositions of C18∼C24 alkalines were utilized preferentially. Under anaerobic conditions, paraffin utilization was approximately 1/8 that seen under aerobic conditions, and the compositions of C34 and C36 alkalines were utilized preferentially. The effects of salinity, temperature, and biosurfactants on paraffin degradation were also evaluated. The strain was also demonstrated to grow on oil, and decreased oil viscosity by 44.7% and degraded oil by 10.4% under aerobic conditions. Our results indicated that G. amicalis LH3 has potential applications in paraffin control, microbial enhanced oil recovery (MEOR), and the bioremediation of hydrocarbon-polluted environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Chen, F., J. M. Qu, F. X. Wang, and J. Liu (2003) The actuality of research and direction of development on oil well cleaning paraffin agent. Chem. Eng. Oil Gas 32: 243–245.

    Google Scholar 

  2. Jokuty, P., S. Whiticar, Z. Wang, M. Landriault, L. Sigouin, and J. Mullin (1996) A new method for the determination of wax content of crude oils. Spill Sci. Tech-nol. Bull. 3: 195–198.

    Article  CAS  Google Scholar 

  3. Giangiacomo, L. (1997) Paraffin Control Project. Rocky Mountain Oilfield Testing Center Project Test Reports, U.S. Department of Energy. Virginia, USA.

  4. Leòn, V. and M. Kumar (2005) Biological upgrading of heavy crude oil. Biotechnol. Bioprocess Eng. 10: 471–481.

    Article  Google Scholar 

  5. Wang, B. (1994) Crystallization and deposition of paraffin in oil fields and cleaning paraffin agent. Speciality Petrochem. 6: 64–71.

    Google Scholar 

  6. Bao, M. T., X. N. Fan, Q. F. Cao, A. Q. Ma, and S. X. Guo (2006) Progress in viscosity reducing technologies for recovery of viscous crude oils. Oilfield Chem. 23: 284–292.

    CAS  Google Scholar 

  7. Wang, D. X., Y. S. Du, and Q. F. Chen (2004) Synthesis and surface activity of perfluoropolyether-sulfonate viscosity reducer. Acta Petrolei Sinica Petroleum Processing Section 20: 56–60.

    CAS  Google Scholar 

  8. Lazar, I., A. Voicu, C. Nicolescu, D. Mucenica, S. Do-brota, I. G. Petrisor, M. Stefanescu, and L. Sandulescu (1999) The use of naturally occurring selectively isolated bacteria for inhibiting paraffin deposition. J. Pet. Sci. Eng. 22: 161–169.

    Article  CAS  Google Scholar 

  9. Wang, Z. (2005) Microbial waxing control in production wells of faulted block reservoir W541. Oilfield Chem. 22: 20–22.

    Google Scholar 

  10. Li, Q. X., C. B. Kang, and C. K. Zhang (2005) Waste water produced from an oilfield and continuous treatment with an oil-degrading bacterium. Process Biochem. 40: 873–877.

    Article  CAS  Google Scholar 

  11. Peressutti, S. R., H. M. Alvarez, and O. H. Pucci (2003) Dynamics of hydrocarbon-degrading bacteriocenosis of an experimental oil pollution in Patagonian soil. Int. Biodeterior. Biodegradation 52: 21–30.

    Article  CAS  Google Scholar 

  12. Sharma, S. L. and A. Pant (2000) Biodegradation and conversion of alkanes and crude oil by a marine Rho-dococcus sp. Biodegradation 11: 289–294.

    Article  CAS  Google Scholar 

  13. Lei, G. L., W. H. Xu, Z. Z. Zhang, and H. Chen (2005) Experimental research of microbial adsorption law and paraffin control mechanism. J. Univ. Petrol. 29: 65–69.

    Google Scholar 

  14. Das, K. and A. K. Mukherjee (2007) Crude petroleum-oil biodegradation efficiency of Bacillus subtilis and Pseudomonas aeruginosa strains isolated from a petroleum-oil contaminated soil from North-East India. Bioresour. Technol. 98: 1339–1345.

    Article  CAS  Google Scholar 

  15. Koma, D., F. Hasumi, E. Yamamoto, T. Ohta, S. Y. Chung, and M. Kubo (2001) Biodegradation of long-chain n-paraffins from waste oil of car engine by Acinetobacter sp. J. Biosci. Bioeng. 91: 94–96.

    Article  CAS  Google Scholar 

  16. Rahman, K. S. M., J. Thahira-Rahman, P. Lakshmana-perumalsamy, and I. M. Banat (2002) Towards efficient crude oil degradation by a mixed bacterial consortium. Bioresour. Technol. 85: 257–261.

    Article  CAS  Google Scholar 

  17. Zhao, N. X. and M. Zhang (2006) Names of Medical Bacteria and Taxonomic Identification. 2nd ed., pp. 164–168. Shandong University Press, Jinan, China.

    Google Scholar 

  18. Song, M. Y., J. Q. Lin, Y. H. Wei, and Q. Li (2004) The study on the characteristics of oil recovery enhancing microbiology of Bacillus S-1. J. Shandong Univ. 39: 117–120.

    CAS  Google Scholar 

  19. Stackebrandt, E., F. A. Rainey, and N. L. Ward-Rainey (1997) Proposal for a new hierarchic classification sys-tem, Actinobacteria classis nov. Int. J. Syst. Bacteriol. 47: 479–491.

    Google Scholar 

  20. Tsukamura, M. (1971) Proposal of a new genus, Gordona, for slightly acid-fast organisms occurring in sputa of patients with pulmonary disease and in soil. J. Gen. Microbiol. 68: 15–26.

    CAS  Google Scholar 

  21. Arenskötter, M., D. Bröker, and A. Steinbüchel (2004) Biology of the metabolically diverse genus Gordonia. Appl. Environ. Microbiol. 70: 3195–3204.

    Article  CAS  Google Scholar 

  22. Xue, Y. F., X. S. Sun, P. J. Zhou, R. L. Liu, F. L. Liang, and Y. H. Ma (2003) Gordonia paraffinivorans sp. nov., a hydrocarbon-degrading actinomycete isolated from an oil-producing well. Int. J. Syst. Evol. Microbiol. 53: 1643–1646.

    Article  CAS  Google Scholar 

  23. Kummer, C., P. Schumann, and E. Stackebrandt (1999) Gordonia alkanivorans sp. nov., isolated from tar-contaminated soil. Int. J. Syst. Bacteriol. 49: 1513–1522.

    Article  CAS  Google Scholar 

  24. Kim, S. B., R. Brown, C. Oldfield, S. C. Gilbert, S. Iliarionov, and M. Goodfellow (2000) Gordonia amicalis sp. nov., a novel dibenzothiophene-desulphurizing actinomycete. Int. J. Syst. Evol. Microbiol. 50: 2031–2036.

    CAS  Google Scholar 

  25. Amouric, A., F. Verhe, R. Auria, and L. Casalot (2006) Study of a hexane-degrading consortium in a biofilter and in liquid culture: biodiversity, kinetics and characterization of degrading strains. FEMS Microbiol. Ecol. 55: 239–247.

    Article  CAS  Google Scholar 

  26. Rahman, K. S. M., T. J. Rahman, Y. Kourkoutas, I. Petsas, R. Marchant, and I. M. Banat (2003) Enhanced bio-remediation of n-alkane in petroleum sludge using bacterial consortium amended with rhamnolipid and micro-nutrients. Bioresour. Technol. 90: 159–168.

    Article  CAS  Google Scholar 

  27. Ijah, U. J. J. (1998) Studies on relative capabilities of bacterial and yeast isolates from tropical soil in degrading crude oil. Waste Manage. 18: 293–299.

    Article  CAS  Google Scholar 

  28. Liu, W. G., B. Zhao, H. Zhang, F. T. Xu, and X. J. Zheng (2001) Screening, performance evaluation and site application of paraffin thirsty bacteria in low permeability reservoir. Spec. Oil Gas Reserv. 8: 85–89.

    Google Scholar 

  29. Mukherji, S., S. Jagadevan, G. Mohapatra, and A. Vijay (2004) Biodegradation of diesel oil by an Arabian Sea sediment culture isolated from the vicinity of an oil field. Bioresour. Technol. 95: 281–286.

    Article  CAS  Google Scholar 

  30. Boopathy, R. (2004) Anaerobic biodegradation of no. 2 diesel fuel in soil: a soil column study. Bioresour. Technol. 94: 143–151.

    Article  CAS  Google Scholar 

  31. Kim, K. K., C. S. Lee, R. M. Kroppenstedt, E. Stackebrandt, and S. T. Lee (2003) Gordonia sihwensis sp. nov., a novel nitrate-reducing bacterium isolated from a wastewater-treatment bioreactor. Int. J. Syst. Evol. Microbiol. 53: 1427–1433.

    Article  CAS  Google Scholar 

  32. Venosa, A. D. and X. Q. Zhu (2003) Biodegradation of crude oil contaminating marine shorelines and freshwater wetlands. Spill Sci. Technol. Bull. 8: 163–178.

    Article  CAS  Google Scholar 

  33. Koma, D., Y. Sakashita, K. Kubota, Y. Fujii, F. Hasumi, S. Y. Chung, and M. Kubo (2003) Degradation of car engine base oil by Rhodococcus sp. NDKK48 and Gordonia sp. NDKY76A. Biosci. Biotechnol. Biochem. 67: 1590–1593.

    Article  CAS  Google Scholar 

  34. Miyata, N., K. Iwahori, J. M. Foght, and M. R. Gray (2004) Saturable, energy-dependent uptake of phenan-threne in aqueous phase by Mycobacterium sp. strain RJGII-135. Appl. Environ. Microbiol. 70: 363–369.

    Article  CAS  Google Scholar 

  35. Liu Y., B. Z. Mu, and H. L. Liu (2005) Advance in mechanism of alkane uptake by microorganism. Microbiology 32: 109–113.

    CAS  Google Scholar 

  36. Liu, Y., B. Z. Mu, and H. L. Liu (2006) Selective transport of alkanes into cells of alkane-degrading bacteria. Microbiology 33: 63–67.

    Google Scholar 

  37. Rhykerd, R. L., R. W. Weaver, and K. J. Mclnnes (1995) Influence of salinity on bioremendiation of oil in soil. Environ. Pollut. 90: 127–130.

    Article  CAS  Google Scholar 

  38. Banat, I. M. (1995) Biosurfactants production and possible uses in microbial enhanced oil recovery and oil pollution remediation: a review. Bioresour. Technol. 51: 1–12.

    Article  CAS  Google Scholar 

  39. Zhang, Y. M. and R. M. Miller (1992) Enhanced octadecane dispersion and biodegradation by a Pseudomonas rhamnolipid surfactant (biosurfactant). Appl. Environ. Microbiol. 58: 3276–3282.

    CAS  Google Scholar 

  40. Zhang, Y. M. and R. M. Miller (1994) Effect of a Pseudomonas rhamnolipid biosurfactant on cell hydrophobicity and biodegradation of octadecane. Appl. Environ. Microbiol. 60: 2101–2106.

    CAS  Google Scholar 

  41. Ito, S. and S. Inoue (1982) Sophorolipids from Torulopsis bombicola: possible relation to alkane uptake. Appl. Environ. Microbiol. 43: 1278–1283.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Qun Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hao, DH., Lin, JQ., Song, X. et al. Isolation, identification, and performance studies of a novel paraffin-degrading bacterium of Gordonia amicalis LH3. Biotechnol Bioproc E 13, 61–68 (2008). https://doi.org/10.1007/s12257-007-0168-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-007-0168-8

Keywords

Navigation