Skip to main content
Log in

Identification and characterization of a pigment-producing denitrifying bacterium

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Herein, a denitrifying bacterium that produced greenish fluorescent pigment under aerobic conditions was accidentally isolated from municipal sewage sludge. Using 16S-rDNA sequence analysis, we identified the isolate as Pseudomonas aeruginosa R12, with 100% similarity. We achieved the highest pigment production rate (1.36 mg/L/h) in a 1-L bioreactor under aerobic conditions, using the optimal culture parameters determined in this study: 37°C, pH 8.0, 200 rpm, 5 wm aeration, and medium containing succinate and (NH4)2SO4. The pigment was not a secondary metabolite and had no antibacterial activity on its co-isolates. Under anaerobic conditions, the isolate produced mainly N2 and behaved as a strong denitrifier, displaying synergistic denitrification with co-isolated denitrifiers. To our knowledge, herein we have described the first instance in which P. aeruginosa R12 produces a fluorescent pigment under aerobic conditions. This newly-isolated strain therefore shows potential as a commercial resource for natural pigment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jeter, R. M. and J. L. Ingraham (1981) The Denitrifying Prokrayotes: The Prokaryotes. Vol. II, Springer-Verlag, Berlin, Heidelberg, New York, NY, USA.

    Google Scholar 

  2. Lim, S. J., Y. H. Ahn, E. Y. Kim, and H. N. Chang (2006) Nitrate removal in a packed bed reactor using volatile fatty acids from anaerobic acidogenesis of food wastes. Biotechnol. Bioprocess Eng. 11: 538–543.

    Article  CAS  Google Scholar 

  3. Cho, Y. J., H. J. Hwang, S. W. Kim, C. H. Song, and J. W. Yun (2002) Effect of carbon source and aeration rate on broth rheology and fungal morphology during red pigment production by Paecilomyces sinclairii in a batch bioreactor. J Biotechnol. 95: 13–23.

    Article  CAS  Google Scholar 

  4. Dziezak, J. D. (1987) Applications of food colorants. Food Technol. 41: 78–80.

    CAS  Google Scholar 

  5. Fenice, M., F. Federici, L. Selbmann, and M. Petruccioli (2000) Repeated-batch production of pigments by immobilized Monascus purpureus. J. Biotechnol. 80: 271–276.

    Article  CAS  Google Scholar 

  6. Francis, F. J. (1989) Food colorants: anthocyanins. Crit. Rev. Food Sci. Nutr. 28: 273–314.

    Article  CAS  Google Scholar 

  7. Kim, J. K., S. M. Park, and S. J. Lee (1995) Novel antimutagenic pigment produced by Bacillus licheniformis SSA3. J Microbiol. Biotechnol. 5: 48–50.

    CAS  Google Scholar 

  8. Masahiro, K. O., K. Mine, M. Taya, S. Tone, and T. Ichi (1994) Production and release of anthraquinone pigments by hairy roots of madder (Rubia tinctorum L.) under improved culture conditions. J Ferment. Bioeng. 77: 103–106.

    Article  Google Scholar 

  9. Lauro, G. J. (1991) A primer on natural colors. Cereal Foods World 36: 949–953.

    CAS  Google Scholar 

  10. Gray, C. T., N. J. Jacobs, and S. Ely (1973) A new cytochrome b-like pigment with a peak at 567 nm and a low redox potential in denitrifying bacteria. Biochim. Biophys. Acta 325: 72–80.

    Article  CAS  Google Scholar 

  11. Jacobs, N. J. and J. M. Jacobs (1976) Nitrate, fumarate, and oxygen as electron acceptors for a late step in microbial heme synthesis. Biochim. Biophys. Acta 449: 1–9.

    Article  CAS  Google Scholar 

  12. Barbhaiya, H. B. and K. K. Rao (1985) Production of pyoverdine, the fluorescent pigment of Pseudomonas aeruginosa PAO1. FEMS Microbiol. Lett. 27: 233–235.

    Article  CAS  Google Scholar 

  13. Fava, F., D. D. Gioia, and L. Marchetti (1993) Characterization of a pigment produced by Pseudomonas fluorescens during 3-chlorobenzoate co-metabolism. Chemosphere 27: 825–835.

    Article  CAS  Google Scholar 

  14. Vijayan, K. K., I. S. Bright Singh, N. S. Jayaprakash, S. V. Alavandi, S. Somnath Pai, R. Preetha, J. J. S. Rajan, and T. C. Santiago (2006) A brackishwater isolate of Pseudomonas PS-102, a potential antagonistic bacterium against pathogenic vibrios in penaeid and non-penaeid rearing systems. Aquaculture 251: 192–200.

    Article  CAS  Google Scholar 

  15. Kim, J. K., S.-K. Kim, and S.-H. Kim (2001) Characterization of immobilized denitrifying bacteria isolated from municipal sewage. J. Microbiol. Biotechnol. 11: 756–762.

    Google Scholar 

  16. Kim, J. K., J. B. Kim, K. S. Cho, and Y.-K. Hong (2007) Isolation and identification of microorganisms and their aerobic biodegradation of fish-meal wastewater for liquid-fertilization. Int. Biodeterior. Biodegradation 59: 156–165.

    Article  CAS  Google Scholar 

  17. Altschul, S. F., T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25: 3389–3402.

    Article  CAS  Google Scholar 

  18. Gauthier, M. J. and G. N. Flatau (1976) Antibacterial activity of marine violet-pigmented Alteromonas with special reference to the production of brominated compounds. Can. J. Microbiol. 22: 1612–1619.

    Article  CAS  Google Scholar 

  19. Massengale, A. R. D., R. A. Ollar, S. J. Giordano, M. S. Felder, and S. C. Aronoff (1999) Use of the paraffin wax baiting system for identification of Pseudomonas aeruginosa clinical isolates. Diagn. Microbiol. Infect. Dis. 35: 177–183.

    Article  CAS  Google Scholar 

  20. Neter, J., W. Wasserman, and M. H. Kutner (1985) Applied Linear Statistical Models. 2nd ed., pp. 574–579. IRWIN, Homewood, IL, USA.

    Google Scholar 

  21. Sivaprakasam, S., S. Mahadevan, and M. Bhattacharya (2007) Biocalorimetric and respirometric studies on metabolic activity of aerobically grown batch culture of Pseudomonas aeruginosa. Biotechnol. Bioprocess Eng. 12: 340–347.

    CAS  Google Scholar 

  22. Oh, K.-T., C.-M. Kang, M. Kubo, and S.-Y. Chung (2006) Culture condition of Pseudomonas aeruginosa F722 for biosurfactant production. Biotechnol. Bioprocess Eng. 11:471–476.

    CAS  Google Scholar 

  23. Adris, P. and K.-T. Chung (2006) Metabolic activation of bladder procarcinogens, 2-aminofluorene, 4-aminobiphenyl, and benzidine by Pseudomonas aeruginosa and other human endogenous bacteria. Toxicol. In Vitro 20: 367–374.

    Article  CAS  Google Scholar 

  24. Fernandez, R. O. and R. A. Pizarro (1997) High-performance liquid chromatographic analysis of Pseudomonas aeruginosa phenazines. J. Chromatogr. A 771: 99–104.

    Article  CAS  Google Scholar 

  25. Hassen, A., N. Saidi, M. Cherif, and A. Boudabous (1998) Effects of heavy metals on Pseudomonas aeruginosa and Bacillus thuringiensis. Bioresour. Technol. 65: 73–82.

    Article  CAS  Google Scholar 

  26. Nakamura, Y., T. Sawada, Y. Morita, and E. Tamiya (2002) Isolation of a psychrotrophic bacterium from the organic residue of a water tank keeping rainbow trout and antibacterial effect of violet pigment produced from the strain. Biochem. Eng. J. 12: 79–86.

    Article  CAS  Google Scholar 

  27. Poiata, A., A. Vlahovici, and D.-E. Creanga (2005) Ferrofluid effect on Pseudomonas pyoverdine. J. Magn. Magn. Mater. 289: 455–458.

    Article  CAS  Google Scholar 

  28. Reszka, K. J., Y. O’Malley, M. L. McCormick, G. M. Denning, and B. E. Britigan (2004) Oxidation of pyocyanin, a cytotoxic product from Pseudomonas aeruginosa, by microperoxidase 11 and hydrogen peroxide. Free Radic. Biol. Med. 36: 1448–1459.

    Article  CAS  Google Scholar 

  29. King, E. O., M. K. Ward, and D. E. Raney (1954) Two simple media for the determination of pyocyanin and fluorescein. J. Lab. Clin. Med. 44: 301–307.

    CAS  Google Scholar 

  30. Carlson, C. A. and J. L. Ingraham (1983) Comparison of denitrification by Pseudomonas stutzeri, Pseudomonas aeruginosa, and Paracoccus denitrificans. Appl. Environ. Microbiol. 45: 1247–1253.

    CAS  Google Scholar 

  31. Fabregas, J., E. Morales, J. Aran, and A. Otero (1998) Germinated Solanum tuberosum: An agricultural product for marine microalgae culture. Bioresour. Technol. 66: 19–24.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joong Kyun Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, JB., Cho, KS., Jeong, SK. et al. Identification and characterization of a pigment-producing denitrifying bacterium. Biotechnol Bioproc E 13, 217–223 (2008). https://doi.org/10.1007/s12257-007-0201-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-007-0201-y

Keywords

Navigation