Skip to main content
Log in

Eco-toxicity of commercial silver nanopowders to bacterial and yeast strains

  • Articles
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

To test the impact of commercial nanomaterials on the environment and biological species, the potential eco-toxicity of nano sized silver powder was investigated with bacteria, Gram-negative Escherichia coli and Gram-positive Bacillus subtilis and yeast, Saccharomyces cerevisiae. When commercial silver nanopowder was dispersed in water, it was shown to contain both silver nanoparticles and silver ions. S. cerevisiae showed a higher survival rate than the other two species. To compare the antimicrobial activity as a quantitative parameter, the susceptibility constant was determined. The susceptibility constant of the silver ions were larger than those of the silver nanopowder. On average, the degree of susceptibility to silver decreased in the following order, E. coli > B. subtilis > S. cerevisiae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thill, A., O. Zeyons, O. Spalla, F. Chauvat, J. Rose, M. Auffan, and A. M. Flank (2006) Cytotoxicity of CeO2 nanoparticles for Escherichia coli. physico-chemical insight of the cytotoxicity mechanism. Environ. Sci. Technol. 40: 6151–6156.

    Article  CAS  Google Scholar 

  2. Ok-Jae, S., K. Chun-Kwang, and R. Jong Il (2008) Immobilization of glucose oxidase and lactate dehydro genase onto magnetic nanoparticles for bioprocess monitoring system. Biotechnol. Bioprocess Eng. 13: 716–723.

    Article  Google Scholar 

  3. Nel, A., T. Xia, L. Madler, and N. Li (2006) Toxic potential of materials at the nanolevel. Science 311: 622–627.

    Article  CAS  Google Scholar 

  4. Barnard, A. S. (2006) Nanoharzards: knowledge is our first defence. Nat. Mater. 5: 245–248.

    Article  CAS  Google Scholar 

  5. Jeon, H. J., S. C. Yi, and S. G. Oh (2003) Preparation and antibacterial effects of Ag-SiO2 thin films by sol-gel method. Biomaterials 24: 4921–4928.

    Article  CAS  Google Scholar 

  6. Sondi, I. and B. Salopek-Sondi (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J. Colloid Interface Sci. 275: 177–182.

    Article  CAS  Google Scholar 

  7. Lok, C. N., C. M. Ho, R. Chen, Q. Y. He, W. Y. Yu, H. Sun, P. K-H. Tam, J. F. Chiu, and C. M. Che (2006) Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J. Proteome Res. 5: 916–924.

    Article  CAS  Google Scholar 

  8. Russell, A. D. and W. B. Hugo (1994) Antimicrobial activity and action of silver. Prog. Med. Chem. 31: 351–370.

    Article  CAS  Google Scholar 

  9. Olson, M. E., J. B. Wright, K. Lam, and R. E. Burrell (2000) Healing of porcine donor sites covered with silver-coated dressings. Eur. J. Surg. 166: 486–489.

    Article  CAS  Google Scholar 

  10. Bosetti, M., A. Masse, E. Tobin, and M. Cannas (2002) Silver coated materials for external fixation devices: in vitro biocompatibility and genotoxicity. Biomaterials 23: 887–892.

    Article  CAS  Google Scholar 

  11. Hollinger, M. A. (1996) Toxicological aspects of topical silver pharmaceuticals. Crit. Rev. Toxicol. 26: 255–260.

    Article  CAS  Google Scholar 

  12. Simon, V. A., G. H. Niall, and R. Stefania (1996) Copper toxicity towards Saccharomyces cerevisiae: dependence on plasma membrane fatty acid composition. Appl. Environ. Microbiol. 62: 3960–3966.

    Google Scholar 

  13. Lee, S. H., I. S. Oh, Y. I. Kim, S. C. Jun, S. S. So, and H. G. Kim (2007) Phellinus extracts inhibit migration and matrix metalloproteinase secretion in porcine coronary artery endothelial cells. Biotechnol. Bioprocess Eng. 12: 100–105.

    Article  CAS  Google Scholar 

  14. Montaser, A. and D. W. Golightly (1992) Inductively Coupled Plasmas in Analytical Atomic Spectrometry. pp. 361–398. VCH Publishers, Inc., NY, USA.

    Google Scholar 

  15. Covington, A. K. (1993) Introduction: basic electrode types, classifications, and selectivity considerations. pp. 1–20. In: A. K. Covington (ed.). Ion Selective Electrode Methodology. CRC Press, Boca Raton, Florida, USA.

    Google Scholar 

  16. Katherine, B. H. and J. B. Allen (2005) Interaction of silver (I) ions with the respiratory chain of Escherichia coli: an electrochemical and scanning electrochemical microscopy study of the antimicrobial mechanism of micromolar Ag+. Biochemistry 44: 13214–13223.

    Article  Google Scholar 

  17. Munich Information Center for Protein Sequences (MIPS), Comprehensive yeast genome database. http://mips.gsf.de.

  18. Yoon, K. Y., J. Hoon Byeon, J. H. Park, and J. Hwang (2007) Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Sci. Total Environ. 373: 572–575.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinwon Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, S., Lee, J., Kim, K. et al. Eco-toxicity of commercial silver nanopowders to bacterial and yeast strains. Biotechnol Bioproc E 14, 490–495 (2009). https://doi.org/10.1007/s12257-008-0254-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-008-0254-6

Keywords

Navigation