Skip to main content
Log in

Noninvasive quality estimation of adherent mammalian cells for transplantation

  • Reviews
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The noninvasive quality estimation of adherent mammalian cells for transplantation is reviewed. The quality and heterogeneity of cells should be estimated before transplantation because cultured cells are not homogeneous but heterogeneous. The estimation of cell quality should be performed noninvasively because most protocols of regenerative medicine are autologous cell system. The differentiation level and contamination of other cell lineage could be estimated by two-dimensional cell morphology analysis and tracking using a conventional phase contrast microscope. The noninvasive determination of the laser phase shift of a cell using a phase-shifting laser microscope, which might be more noninvasive, and more useful than the atomic force microscope and digital holographic microscope, was carried out to determine the three-dimensional cell morphology, and the estimation of the cell cycle phase of each adhesive cell and the mean proliferation activity of a cell population. Chemical analysis of the culture supernatant by conventional analytical methods such as ELISA was also useful to estimate the differentiation level of a cell population. Chemical analysis of cell membrane and intracellular components using a probe beam, an infrared beam, and Raman spectroscopy was useful for diagnosing the viability, apoptosis, and differentiation of each adhesive cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yoshida, T. and Takagi, M. (2004) Cell processing engineering for ex vivo expansion of hematopoietic cells. Biochem. Eng. J. 20: 99–106.

    Article  CAS  Google Scholar 

  2. Takagi, M. (2005) Cell processing engineering for ex vivo expansion of hematopoietic cells: a review. J. Biosci. Bioeng. 99: 189–196.

    Article  CAS  Google Scholar 

  3. Nakajima, K., Kanazawa, K., Takagi, M., Wakitani, S., and Inagi, M. (2009) Development of the automatic cell culture machine for the adherent cell. Inflam. Regen. 29: 133–134.

    Google Scholar 

  4. Yokoyama, M., H. Miwa, S. Maeda, S. Wakitani, and M. Takagi (2008) Influence of fetal calf serum on differentiation of mesenchymal stem cells during expansion. J. Biosci. Bioeng. 106: 46–50.

    Article  CAS  Google Scholar 

  5. Takagi, M., T. Kitabayashi, S. Koizumi, H. Hirose, S. Kondo, M. Fujiwara, K. Ueno, H. Misawa, Y. Hosokawa, H. Masuhara, and S. Wakitani (2008) Correlation between cell morphology and aggrecan gene expression level during differentiation from mesenchymal stem cells to chondrocytes. Biotechnol. Lett. 30: 1189–1195.

    Article  CAS  Google Scholar 

  6. Lee, C. R., A. J. Grodzinsky, and M. Spector (2003) Modulation of the contractile and biosynthetic activity of chondrocytes seeded in collagen-glycosaminoglycan matrices. Tissue Eng. 9: 27–36.

    Article  CAS  Google Scholar 

  7. Oda, R., K. Suardita, K. Fujimoto, H. Pan, W. Yan, A. Shimazu, H. Shintani, and Y. Kato (2003) Anti-membrane-bound transferrin-like protein antibodies induce cell-shape change and chondrocyte differentiation in the presence or absence of concanavalin A. J. Cell. Sci. 116: 2029–2038.

    Article  CAS  Google Scholar 

  8. Li, K., E. D. Miller, M. Chen, T. Kanade, L. E. Weiss, and P. G. Campbell (2008) Cell population tracking and lineage construction with spatiotemporal context. Med. Imag. Anal. 12: 546–566.

    Article  Google Scholar 

  9. Kato, R., H. Shiono, W. Yamamoto, Y. Nagura, K. Mukaiyama, K. Kojima, H. Kii, R. Koshiba, A. Yamada, T. Uozumi, H. Watanabe, J. Mizuno, K. Tomioka, and H. Honda (2009) Cell quality prediction system based on image analysis combined with bioinformatics for the quality control of regenerative cell therapy. Tissue Eng. Regen. Med. 6: S95.

    Google Scholar 

  10. Kagalwala, F. and T. Kanade (2003) Reconstructing specimens using DIC microscope images. Cybernetics 33: 728–737.

    CAS  Google Scholar 

  11. Fotiadis, D., S. Scheuring, S. A. Muller, A. Engel, and D. J. Muller (2002) Review: imaging and manipulation of biological structures with AFM. Micron. 33: 385–397.

    Article  CAS  Google Scholar 

  12. Takagi, M., H. Hayashi, and T. Yoshida (2000) The effect of osmolarity on metabolism and morphology in adhesion and suspension Chinese hamster ovary cells producing tissue plasminogen activator. Cytotechnol. 32: 171–179.

    Article  CAS  Google Scholar 

  13. Kemper, B., D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally (2006) Investigation of living pancreas tumor cells by digital holographic microscopy. J. Biomed. Opt. 11: 34005.

    Article  Google Scholar 

  14. Endo, J., J. Chen, D. Kobayashi, Y. Wada, and H. Fujita (2002) Transmission laser microscope using the phaseshifting technique and its application to measurement of optical waveguides. Appl. Opt. 41: 1308–1314.

    Article  Google Scholar 

  15. Takagi, M., T. Kitabayashi, S. Ito, M. Fujiwara, and A. Tokuda (2007) Noninvasive measurement of three-dimensional morphology of adhered Chinese hamster ovary cells employing phase-shifting laser microscope. J. Biomed. Opt. 12: 54010-1–5.

    Article  Google Scholar 

  16. Sanger, J. W. and J. M. Sanger (1980) Surface and shape changes during cell division. Cell Tissue Res. 209: 177–186.

    Article  CAS  Google Scholar 

  17. Ito, S. and M. Takagi (2009) Correlation between cell cycle phase of adherent Chinese hamster ovary cells and laser phase shift determined by phase-shifting laser microscopy. Biotechnol. Lett. 31: 39–42.

    Article  CAS  Google Scholar 

  18. Tokumitsu, A., S. Wakitani, and M. Takagi (2009) Noninvasive estimation of cell cycle phase and proliferation rate of human mesenchymal stem cells by phase-shifting laser microscopy. Cytotechnol. 59: 161–167.

    Article  Google Scholar 

  19. Koehler, M. R., A. K. Bosserhoff, G. von Beust, A. Bauer, A. Blesch, R. Buettner, J. Schlegel, U. Bogdahn, and M. Schmid (1996) Assignment of the human melanoma inhibitory activity gene (MIA) to 19q13.32-q13.33 by fluorescence in situ hybridization (FISH). Genomics 35: 265–267.

    Article  CAS  Google Scholar 

  20. Bosserhoff, A. K., R. Hein, U. Bogdahn, and R. Buettner (1996) Structure and promoter analysis of the gene encoding the human melanoma-inhibiting protein MIA. J. Biol. Chem. 271: 490–495.

    Article  CAS  Google Scholar 

  21. Bosserhoff, A. K., S. Kondo, M. Moser, U. H. Dietz, N. G. Copeland, D. J. Gilbert, N. A. Jenkins, R. Buettner, and L. J. Sandell (1997) Mouse CD-RAP/MIA gene: structure, chromosomal localization, and expression in cartilage and chondrosarcoma. Dev. Dyn. 208: 516–525.

    Article  CAS  Google Scholar 

  22. Bosserhoff, A. K., M. Kaufmann, B. Kaluza, I. Bartke, H. Zirngibl, R. Hein, W. Stolz, and R. Buettner (1997) Melanoma-inhibiting activity, a novel serum marker for progression of malignant melanoma. Cancer Res. 57: 3149–3153.

    CAS  Google Scholar 

  23. Tscheudschilsuren, G., A. K. Bosserhoff, J. Schlegel, D. Vollmer, A. Anton, V. Alt, R. Schnettler, J. Brandt, and G. Proetzel (2006) Regulation of mesenchymal stem cell and chondrocyte differentiation by MIA. Exp. Cell Res. 312: 63–72.

    CAS  Google Scholar 

  24. Bosserhoff, A. K. and R. Buettner (2003) Establishing the protein MIA (melanoma inhibitory activity) as a marker for chondrocyte differentiation. Biomaterials 24: 3229–3234.

    Article  CAS  Google Scholar 

  25. Onoue, K., H. Kusubashi, S. Wakitani, and M. Takagi (2009) Noninvasive estimation of aggrecan gene expression level of chondrocytes by the analysis of culture supernatant. Abstract of 61 st Annual Meeting of the Japanese Society for Bioscience and Bioengineering. September 23–25. Nagoya, Japan.

  26. Wu, X. Z. and S. Terada (2005) Noninvasive diagnosis of a single cell with a probe beam. Biotechnol. Prog. 21: 1772–1774.

    Article  CAS  Google Scholar 

  27. Miyamoto, K., P. Yamada, R. Yamaguchi, T. Muto, A. Hirano, Y. Kimura, M. Niwano, and H. Isoda (2007) In situ observation of cell adhesion and metabolism using surface infrared spectroscopy. Cytotechnol. 55: 143–149.

    Article  CAS  Google Scholar 

  28. Yamaguchi, R., A. Hirano-Iwata, Y. Kimura, M. Niwano, K. Miyamoto, H. Isoda, and H. Miyazaki (2009) In situ real-time monitoring of apoptosis on leukemia cells by surface infrared spectroscopy. J. Appl. Phys. 105: 024701.

    Article  Google Scholar 

  29. Jell, G., I. Notingher, O. Tsigkou, P. Notingher, J. M. Polak, L. L. Hench, and M. M. Stevens (2008) Bioactive glass-induced osteoblast differentiation: a noninvasive spectroscopic study. J. Biomed. Mater. Res. 86A: 31–40.

    Article  CAS  Google Scholar 

  30. Draux, F., P. Jeannesson, A. Beljebbar, A. Tfayli, N. Fourre, M. Manfait, J. Sule-Suso, and G. D. Sockalingum (2009) Raman spectral imaging of single living cancer cells: a preliminary study. Analyst 134: 542–548.

    Article  CAS  Google Scholar 

  31. Kunstar, A., C. Otto, C. A. van Blitterswij, and A. A. van Apeldoorn (2009) Raman monitoring of chondrocyte dedifferentiation and differentiation. Tissue Eng. Regen. Med. 6: S231.

    Google Scholar 

  32. Takagi, M., Y. Miyata, S. Wakitani, S. Ishizaka, and N. Kitamura (2009) Noninvasive discrimination of adherent chondrocytes from fibroblasts using Raman spectroscopy. Abstract of 61 st Annual Meeting of the Japanese Society for Bioscience and Bioengineering. September 23–25. Nagoya, Japan.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mutsumi Takagi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takagi, M. Noninvasive quality estimation of adherent mammalian cells for transplantation. Biotechnol Bioproc E 15, 54–60 (2010). https://doi.org/10.1007/s12257-009-3057-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-009-3057-5

Keywords

Navigation