Skip to main content
Log in

Optimization of nutrient medium containing agricultural waste for xylanase production by Bacillus pumilus B20

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

We aimed to optimize a nutrient medium containing agricultural waste for xylanase production by Bacillus pumilus B20. Xylanase production with lignocellulosic material was optimized in two steps using DeMeo’s fractional factorial design. A 3.4-fold increase in xylanase production (313.3 U/mL) was achieved using the optimized culture medium consisting of (g/L): K2HPO4, 2; MgSO4·7H2O, 0.3; CaCl2·2H2O, 0.01; NaCl, 2; peptone, 5 yeast extract, 4; and wheat bran, 50. B. pumilus B20 produced a high level of xylanase, which may have potential industrial application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gilbert, M., M. Yaguchi, D. C. Watson, K. K. Y. Wong, C. Breuil, and N. Saddler (1993) A comparison of two xylanases from the thermophilic fungi Thielavia terrestris and Thermoascus custaceus. Appl. Microbiol. Biotechnol. 40: 508–514.

    Article  CAS  Google Scholar 

  2. Nakamura, S., K. Wakabayashi, and K. Horikoshi (1993) Purification and some properties of an alkaline xylanase from akaliphilic Bacillus sp. strain 41 M-1. Appl. Env. Microbiol. 59: 2311–2316.

    CAS  Google Scholar 

  3. Collins, T., C. Gerday, and G. Feller (2005) Xylanases, xylanase families and extermophilic xylanases. FEMS Microbiol. Lett. 29: 3–23.

    Article  CAS  Google Scholar 

  4. Coughlan, M. and G. Hazlewood (1993) β-1,4-D-xylan-degrading enzyme systems: Biochemistry, molecular biology and applications. Biotechnol. Appl. Bioc. 17: 259–289.

    CAS  Google Scholar 

  5. Wong, K. K. Y., L. U. L. Tan, and J. N. Saddler (1988) Multiplicity of β-1,4-xylanase in microorganisms: Functions and applications. Microbiol. Rev. 52: 305–317.

    CAS  Google Scholar 

  6. Rifaat, H. M., Z. A. Nagieb, and Y. M. Ahmed (2005) Production of xylanases by Streptomyces species and their bleaching effect on rice straw pulp. Appl. Ecol. Env.Research. 4: 151–160.

    Google Scholar 

  7. Kim, J. H., S. C. Kim, and S. W. Nam (2000) Constitutive over-expression of the endoxylanase gene in Bacillus subtilis. J. Microbiol. Biotechnol. 10: 551–553.

    CAS  Google Scholar 

  8. Atev, A. P., C. A. Panoyotov, L. G. Bobareva, L. D. Damyanova, and D. Nicolava (1987) Studies of biosynthesis of hydrolysis by Trichoderma sp m7 on submerged and solid-state cultivation conditions. Acta Biotechnologica. 7: 9–16.

    Article  CAS  Google Scholar 

  9. Ganju, R. K., P. J. Vithayathil, and S. K. Murthy (1989) Purification and characterization of two xylanase from Chaetomium thermophile var. coprophile. Can. J. Microbiol. 35: 836–842.

    Article  CAS  Google Scholar 

  10. Kadowaki, M. K. and C. G. M. Souza (1997) Xylanase production by Aspergillus tamarii. Appl. Biochem. Biotechnol. 66: 97–106.

    Article  CAS  Google Scholar 

  11. Mach, R. L., J. Strauss, S. Zeilinger, M. Schindler, and C. P. Kubicek (1996) Carbon catabolite repression of xylanase I (xyn1) gene expression in Trichoderma reesei. Mol. Microbiol. 21: 1273–1281.

    Article  CAS  Google Scholar 

  12. Van Peij, N. N. M. E., J. Visser, and L. H. De Graaff (1998) Isolation and analysis of xlnR, encoding transcriptional activator coordinating xylanolytic expression in Aspergillus niger. Mol. Microbiol. 27: 131–142.

    Article  Google Scholar 

  13. Marui, J., A. Tanaka, S. Mimura, L. H. De Graaff, J. Visser, N. Kitamoto, M. Kato, T. Kobayashi, and N. Tsukagoshi (2002) A transcriptional activator, AoXlnR, controls the expression of genes encoding xylanolytic enzymes in Aspergillus oryzae. Fungal Genet. Biol. 35: 157–169.

    Article  CAS  Google Scholar 

  14. Ogasawara, W., Y. Shida, T. Furukawa, R. Shimada, S. Nakagawa, M. Kawamura, T. Yagyu, A. Kosuge, J. Xu, M. Nogawa, H. Okada, and Y. Morikawa (2006) Cloning, functional expression and promoter analysis of xylanase III gene from Trichoderma reesei. Appl. Microbiol. Biotechnol. 72: 995–1003.

    Article  CAS  Google Scholar 

  15. Xu, J., M. Nogawa, H. Okada, and Y. Morikawa (2000) Regulation of xyn3 gene expression in Trichoderma reesei PC-3-7. Appl. Microbiol. Biotechnol. 54: 370–375.

    Article  CAS  Google Scholar 

  16. Mi-Young Jeong, Eung-Ryoung Lee, Cheol-Won Yun, Ssang-Goo Cho, and Yong-Jin Choi (2006) Post-transcriptional regulation of the xynA expression by a novel mRNA binding protein, XaiF. Biochem. Biophysic. Res. Comn. 351: 153–158.

    Article  CAS  Google Scholar 

  17. El-Helow, E. R. and A. El-Ahawany (1999) Lichenase production by catabolite repression-resistant Bacillus subtilis mutants: Optimization and formulation of an agro-industrial by-product medium. Enz. Microbiol. Technol. 24: 325–331.

    Article  CAS  Google Scholar 

  18. Heck, J., S. Flores, P. Hertz, and M. Ayub (2005) Optimization of cellulose-free xylanase activity produced by Bacillus coagulans BL69 in solid-state cultivation. Proc. Biochem. 40: 107–112.

    Article  CAS  Google Scholar 

  19. Bailey, M. J., P. Biely, and K. Poutanen (1992) Interlaboratory testing of methods for assay of xylanase activity. J. Biotechnol. 23: 257–270.

    Article  CAS  Google Scholar 

  20. Miller, G. L. (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem. 31: 426–428.

    Article  CAS  Google Scholar 

  21. Lowry, O. H., N. J. Rosebrough, A. L. Farr, and R. J. Randall (1951) Protein measurements with the folin-phenol reagent. J. Biol. Chem. 193: 265–275.

    CAS  Google Scholar 

  22. DeMeo, M., M. Laget, R. Phan-Tan-Luu, D. Mathieu, and G. Dumenil (1985) Application of experimental designs for optimization of medium and culture conditions in fermentation. Bioscience. 4: 99–102.

    CAS  Google Scholar 

  23. Bajpai, P. (1997) Microbial xylanolytic enzyme system: Properties and applications. Adv. Appl. Microbiol. 43: 141–194.

    Article  CAS  Google Scholar 

  24. Srinivasan, M. D. and M. V. Rele (1999) Microbial xylanases for paper industry. Curr. Sci. 77: 137–142.

    CAS  Google Scholar 

  25. Jain, A. (1995) Production of xylanase by thermophilic Melanocarpus albomyces IIS 68. Proc. Biochem. 30: 705–709.

    Google Scholar 

  26. Lequart, C., J. M. Nuzillard, B. Kurek, and P. Debeire (1999) Hydrolysis of wheat bran and straw by an endoxylanase: Production and structural characterization of cinnamoyl-oligosaccharides. Carbohydr. Res. 319: 102–111.

    Article  CAS  Google Scholar 

  27. Saunders, R. M. (1985) Rice bran: Composition and potential food uses. Food Rev.International 1: 465–495.

    Article  CAS  Google Scholar 

  28. Beall, D. S. and L. O. Ingram (1992) Conversion of hydrolysates of corn cobs and hulls into ethanol by recombinant Escherichia coli B containing integrated genes for ethanol production. Biotechnol. Lett. 14: 857–862.

    Article  CAS  Google Scholar 

  29. Geddes, C. C., J. J. Peterson, C. Roslander, G. Zacchi, M. T. Mullinnix, K. T. Shanmugam, and L. O. Ingram (2010) Optimizing the saccharification of sugar cane bagasse using dilute phosphoric acid followed by fungal cellulases. Bioresour. Technol. 101: 1851–1857.

    Article  CAS  Google Scholar 

  30. Archana, A. and T. Satyanarayana (1997) Xylanase production by thermophilic Bacillus licheniformis A99 in solid state fermentation. Enz. Microb. Technol. 21: 12–17.

    Article  CAS  Google Scholar 

  31. Morosoli, R., S. Durand, and F. Boucher (1989) Stimulation of xylanase synthesis in Cryptococcus albidus by cAMP. FEMS Microbiol. Lett. 57: 57–60.

    Article  CAS  Google Scholar 

  32. Piñaga, F., M. T. Fernández-Espinar, S. Vallés, and D. Ramón (1994) Xylanase production in Aspergillus nidulans: Induction and carbon catabolite repression. FEMS Microbiol. Lett. 115: 319–324.

    Article  Google Scholar 

  33. Cho, S. G. and Y. J. Choi (1998) Characterization of the xaiF gene encoding a novel xylanase- activity-increasing factor, XaiF. J. Microbiol. Biotechnol. 8: 378–387.

    Google Scholar 

  34. Sanghi, A., N. Garg, J. Sharma, K. Kuhar, R. C. Kuhad, and V. K. Gupta (2008) Optimization of xylanase production using inexpensive agro-residues by alkalophilic Bacillus subtilis ASH in solid-state fermentation. World J. Microb. Biotechnol. 24: 633–640.

    Article  CAS  Google Scholar 

  35. Yaşinok Ersayin, A., F. I. Şahin, and M. Haberal (2008) Isolation of endopyhtic and xylanolytic Bacillus pumilus strains from Zea mays. Tarim Bilimleri Dergisi. 14: 374–380

    Google Scholar 

  36. Ninawe, S. and R. C. Kuhad (2005) Use of xylan-rich cost effective agro-residues in the production of xylanase by Streptomyces cyaneus SN32. J. Appl. Microb. 99: 1141–1148.

    Article  CAS  Google Scholar 

  37. Mahjabeen, S., M. S. Akhtar, and S. Jamil (2002) Production of xylanase on natural substrates by Bacillus subtilis. Int. J. Agri. Biol. 4: 211–213.

    Google Scholar 

  38. Mukesh Kapoor, L. M. Nair, and R. C. Kuhad (2008) Cost-effective xylanase production from free and immobilized Bacillus pumilus strain MK001 and its application in saccharification of Prosopis juliflora. Biochem. Engineering J. 38: 88–97.

    Article  CAS  Google Scholar 

  39. Duarte, M. C. T., A. C. A. Pellegrino, E. P. Portugal, A. N. Ponezi, and T. T. Franco (2000) Characterization of alkaline xylanases from bacillus pumilus. Braz. J. Microbiol. 31: 90–94.

    Article  CAS  Google Scholar 

  40. Zhu, Y., W. Knol, J. P. Smits, and J. Bol (1996) Medium optimization for nuclease P1 production by Penicillium citrinum in solid-state fermentation using polyurethane foam as inert carrier. Enz. Microbial. Technol. 18: 108–112.

    Article  CAS  Google Scholar 

  41. Christen, P. and M. Raimbault (1991) Optimization of culture medium for aroma production by Ceratocystis fimbriata. Biotechnol. Lett. 13: 521–526.

    Article  CAS  Google Scholar 

  42. Ashokkumar, B., N. Kayalvizhi, and P. Gunasekaran (2001) Optimization of media for b- fructofuranosidase production by Aspergillus niger in submerged and solid state fermentation. Proc. Biochem. 37: 331–338.

    Article  CAS  Google Scholar 

  43. Horitsu, H., Y. Yahashi, K. Takamizawa, K. Kawai, T. Suzuki, and N. Watanabe (1992) Production of xylitol from D-xylose by Candida tropicalis: Optimization of production rate. Biotechnol. Bioeng. 40: 1085–1091.

    Article  CAS  Google Scholar 

  44. Takamizawa, K., S. Nakashima, Y. Yahashi, K. B. Kubata, T. Suzuki, K. Kawai, and H. Horitsu (1996) Optimization of Kojic acid production rate using the Box-Wilson method. J. Ferment. Bioeng. 82: 414–416.

    Article  CAS  Google Scholar 

  45. Pham, P. L., P. Taillandier, M. Delmas, and P. Strehaiano (1998) Optimization of a culture medium for xylanase production by Bacillus sp. using statistical experimental designs. World J. Microbiol. Biotechnol. 14: 185–190.

    Article  CAS  Google Scholar 

  46. Rajendhran, J., V. Krishnakumar, and P. Gunasekaran (2002) Optimization of a fermentation medium for the production of Penicillin G acylase from Bacillus sp. Lett. Appl. Microbiol. 35: 523–527.

    Article  CAS  Google Scholar 

  47. Kayalvizhi, N. and P. Gunasekaran (2008) Production and characterization of a low-molecular-weight bacteriocin from Bacillus licheniformis MKU3. Lett. Appl. Microbiol. 47: 600–607.

    Article  CAS  Google Scholar 

  48. Jeya, M., S. Thiagarajan, and P. Gunasekaran (2005) Improvement of xylanase production in solid-state fermentation by alkali tolerant Aspergillus versicolor MKU3. Lett. Appl. Microbiol. 41: 175–178.

    Article  CAS  Google Scholar 

  49. Haltrich, D., B. Laussamayer, and W. Steiner (1994) Xylanase formation by Sclerotium rolfsii: Effect of growth substrates and development of a culture medium using statistically designed experiments. Appl. Micobiol. Biotechnol. 42: 522–530.

    Article  CAS  Google Scholar 

  50. Techapun, C., S. Sinsuwongwat, M. Watanabe, K. Sasaki, and N. Poosaran (2002) Production of cellulase-free xylanase by a thermotolerant Streptomyces sp. grown on agricultural waste and media optimization using mixture design and Plackett-Burman experimental design methods. Biotechnol. Lett. 24: 1437–1442.

    Article  CAS  Google Scholar 

  51. Gawande, P. V. and M. Y. Kamat (1999) Production of Aspergillus xylanase by lignocellulosic waste fermentation and its application. J. Appl. Microbiol. 87: 511–519.

    Article  CAS  Google Scholar 

  52. Gessesse, A. and G. Mamo (1999) High level Xylanase production by an alkalophilic Bacillus sp. by using solid state fermentation. Enz. Microb. Technol. 25: 68–72.

    Article  CAS  Google Scholar 

  53. Zychlinski, A. W., J. Czakaj, and S. Zukowska (1994) Xylanase production by fungal strains in solid state fermentation. Biores. Technol. 49: 13–16.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Gunasekaran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geetha, K., Gunasekaran, P. Optimization of nutrient medium containing agricultural waste for xylanase production by Bacillus pumilus B20. Biotechnol Bioproc E 15, 882–889 (2010). https://doi.org/10.1007/s12257-009-3094-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-009-3094-0

Keywords

Navigation