Skip to main content
Log in

On-line high performance liquid chromatography measurements of extracellular metabolites in an aerobic batch yeast (Saccharomyces cerevisiae) culture

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

We constructed a bioprocess environment enabling automatic sampling from a bioreactor combined with a compact on-line high performance liquid chromatography (HPLC) unit. This setup allowed us to measure extracellular glucose, ethanol, glycerol, and acetate concentrations automatically at 5 min intervals during the cultivation. This environment also provides mechanical measurement of the optical density (OD) of cells and enables us to collect and store (−35°C) samples for further off-line analyses. Among the available devices, the performance of the sampling-analysis unit is by far the best with regard to speed and number of analytes. Both the sampling and analysis phases are easily controlled by software; thus, providing a unique environment to perform various bioprocess activity tasks, whether they would be cell line screening or optimisation of conditions for growth and productivity. Complex research set-ups can be created and continuous automated measurements empower long-term cultivations with a time series. We provide evidence for the applicability of this environment by performing three comparable batch cultivations with Saccharomyces cerevisiae yeast and show that both the on-line sampling and analysis modes produce reliable data for further use in the monitoring and controlling of bioprocesses. On-line data provided new insight into the dynamics of the diauxic shift during aerobic glucose batch cultivation. When cell growth and carbon dioxide production ceased for the first time during the diauxic shift, acetate accumulation and consumption of the remaining glucose below 0.15 g/L continued to occur for 1 h. At the same time, glycerol and ethanol began to be consumed. Samples were also collected during cultivation for later analysis of intracellular metabolites and to collect more valuable information about metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. FDA (2004) Guidance for Industry, PAT-A Framework for Innovative Pharmaceutical Developement, Manufacturing, and Quality Assurance.

  2. Mazarevica, G., J. Diewok, J. Baena, E. Rosenberg, and B. Lendl (2004) On-line fermentation monitoring by mid-infrared spectroscopy. Appl. Spectrosc. 58: 804–810.

    Article  CAS  Google Scholar 

  3. Fernández-Novales, J., M. López, M. Sánchez, J. García, and J. Morales (2008) A feasibility study on the use of a miniature fiber optic NIR spectrometer for the prediction of volumic mass and reducing sugars in white wine fermentations. J. Food Eng. 89: 325–329.

    Article  Google Scholar 

  4. Noguchi, Y., N. Shimba, H. Toyosaki, K. Ebisawa, Y. Kawahara, E. Suzuki, and S. Sugimoto (2002) In vivo NMR system for evaluating oxygen-dependent metabolic status in microbial culture. J. Microbiol. Methods 51: 73–82.

    Article  CAS  Google Scholar 

  5. Noguchi, Y., Y. Nakai, N. Shimba, H. Toyosaki, Y. Kawahara, S. Sugimoto, and E. Suzuki (2004) The energetic conversion competence of Escherichia coli during aerobic respiration studied by 31P NMR using a circulating fermentation system. J. Biochem. 136: 509–515.

    Article  CAS  Google Scholar 

  6. Skibsted, E., C. Lindemann, C. Roca, and L. Olsson (2001) Online bioprocess monitoring with a multi-wavelength fluorescence sensor using multivariate calibration. J. Biotechnol. 88: 47–57.

    Article  CAS  Google Scholar 

  7. Haack, M., A. Eliasson-Lantz, P. Mortensen, and L. Olsson (2007) Chemometric analysis of in-line multi-wavelength fluorescence measurements obtained during cultivations with a lipase producing Aspergillus oryzae strain. Biotechnol. Bioeng. 96: 904–913.

    Article  CAS  Google Scholar 

  8. Ödman, P., C. Lindvald Johansen, L. Olsson, K. V. Gernaey and A. Eliasson Lantz (2009) On-line estimation of biomass, glucose and ethanol in Saccharomyces cerevisiae cultivations using in-situ multi-wavelength fluorescence and software sensors. J. Biotech. 144: 102–112.

    Article  Google Scholar 

  9. Rhiel, M., M. B. Cohen, D. W. Murhammer, and M. A. Arnold (2002) Nondestructive Near-infrared spectroscopic measurement of multiple analytes in undiluted samples of Serum-based cell culture media. Biotechnol. Bioeng. 77: 73–82.

    Article  CAS  Google Scholar 

  10. Guilbault, G., B. Danielsson, C. Mandenius, and K. Mosbach (1983) Enzyme electrode and thermistor probes for determination of alcohols with alcohol oxidase. Anal. Chem. 55: 1582–1585.

    Article  CAS  Google Scholar 

  11. Alhadeff, E., A. Salgado, O. Cós, N. J. Pereira, F. Valero, and B. Valdman (2008) Integrated biosensor systems for ethanol analysis. Appl. Biochem. Biotechnol. 146: 129–136.

    Article  CAS  Google Scholar 

  12. Tarkiainen, V., T. Kotiaho, I. Mattila, I. Virkajärvi, A. Aristidou, and R. Ketola (2005) On-line monitoring of continuous beer fermentation process using automatic membrane inlet mass spectrometric system. Talanta 65: 1254–1263.

    Article  CAS  Google Scholar 

  13. Phelps, M., J. Hobbs, D. Kilburn, and R. Turner (1995) An autoclavable glucose biosensor for microbial fermentation monitoring and control. Biotechnol. Bioeng. 46: 514–524.

    Article  CAS  Google Scholar 

  14. Esti, M., G. Volpe, D. Compagnone, G. Mariotti, D. Moscone, and G. Palleschi (2003) Monitoring alcoholic fermentation of red wine by electrochemical biosensors. Am. J. Enol. Vitic. 54: 39–45.

    CAS  Google Scholar 

  15. Fatt, I. (1976) The polarographic oxygen sensor: Its theory of operation and its application in biology, medicine, and technology. CRC Press, Cleveland.

    Google Scholar 

  16. Diamantis, V., P. Melidis, and A. Aivasidis (2006) Continuous determination of volatile products in anaerobic fermenters by online capillary gas chromatography. Anal. Chim. Acta 573–574: 189–194.

    Article  Google Scholar 

  17. Kokkonen, R., H. Sirén, S. Kauliomäki, S. Rovio, and K. Luomanperä (2004) On-line process monitoring of water-soluble ions in pulp and paper machine waters by capillary electrophoresis. J. Chromatogr A 1032: 243–252.

    Article  CAS  Google Scholar 

  18. Sirén, H., K. Luomanperä, T. Työppönen, S. Rovio, P. Vastamäki, and P. Savolahti (2004) Process control and drug analysis with an on-line capillary electrophoresis system. J. Biochem. Biophys. Methods 60: 295–307.

    Article  Google Scholar 

  19. Tahkoniemi, H., K. Helmja, A. Menert, and M. Kaljurand (2006) Fermentation reactor coupled with capillary electrophoresis for on-line bioprocess monitoring. J. Pharm. Biomed. Anal. 41: 1585–1591.

    Article  CAS  Google Scholar 

  20. Dinwoodie, R. and D. Mehnert (1985) A continuous method of monitoring and controlling fermentations: Using an automated HPLC system. Biotechnol. Bioeng. 27: 1060–1062.

    Article  CAS  Google Scholar 

  21. Turner, C., M. Gregory, and N. Thornhill (1994) Closed-loop control of fed-batch cultures of recombinant Escherichia coli using on-line HPLC. Biotechnol. Bioeng. 44: 819–829.

    Article  CAS  Google Scholar 

  22. Koliander, W., C. Arnezeder, and W. Hampel (1990) A simple and versatile system for fermentation control by on-line HPLC analysis of medium components. A Biotechnol. 10: 387–394.

    Article  CAS  Google Scholar 

  23. Plum, A. and A. Rehorek (2005) Strategies for continuous online high performance liquid chromatography coupled with diode array detection and electrospray tandem mass spectrometry for process monitoring of sulphonated azo dyes and their intermediates in anaerobic-aerobic bioreactors. J. Chromatogr. A 1084: 119–133.

    Article  CAS  Google Scholar 

  24. Rehorek, A. and A. Plum (2006) Online LC-MS-MS process monitoring for optimization of biological treatment of wastewater containing azo dye concentrates. Anal. Bioanal. Chem. 384: 1123–1128.

    Article  CAS  Google Scholar 

  25. van Dijken, J. P., J. Bauer, L. Brambilla, P. Duboc, J. M. Francois, C. Gancedo, M. L. F. Giuseppin, J. J. Heijnen, M. Hoare, H. C. Lange, E. A. Madden, P. Niederberger, J. Nielsen, J. L. Parrou, T. Petit, D. Porro, M. Reuss, N. van Riel, M. Rizzi, H. Y. Steensma, C. T. Verrips, J. Vindelov, and J. T. Pronk (2000) An interlaboratory comparison of physiological and genetic properties of four Saccharomyces cerevisiae strains. Enz. Microb. Technol. 26: 706–714.

    Article  Google Scholar 

  26. Verduyn, C., E. Postma, W. Scheffers, and J. Van Dijken (1992) Effect of benzoic acid on metabolic fluxes in yeast: A continuous culture study on the regulation of respiration and alcoholic fermentation. Yeast 8: 501–517.

    Article  CAS  Google Scholar 

  27. Liu, Y., F. Wang, and W. Lee (2001) On-line monitoring and controlling system for fermentation processes. Biochem. Eng. J. 1: 17–25.

    Article  Google Scholar 

  28. Buttler, T., L. Gorton, H. Jarskog, G. Marko-Varga, B. Hahn-Hägerdal, N. Meinander, and L. Olsson (1994) Monitoring of ethanol during fermentation of a lignocellulose hydrolysate by on-line microdialysis sampling, column liquid chromatography, and an alcohol biosensor. Biotechnol. Bioeng. 44: 322–328.

    Article  CAS  Google Scholar 

  29. Rehorek, A., K. Urbig, R. Meurer, C. Schäfer, A. Plum, and G. Braun (2002) Monitoring of azo dye degradation processes in a bioreactor by on-line high-performance liquid chromatography. J. Chromatogr. A 949: 263–268.

    Article  CAS  Google Scholar 

  30. Özcan, S. and M. Johnston (1999) Function and regulation of yeast hexose transporters. Microbiol. Mol. Biol. Rev. 63: 554–569.

    Google Scholar 

  31. Reifenberger, E., E. Boles, and M. Ciriacy (1997) Kinetic characterization of individual hexose transporters of Saccharomyces cerevisiae and their relation to the triggering mechanisms of glucose repression. Eur. J. Biochem. 245: 324–333.

    Article  CAS  Google Scholar 

  32. DeRisi, J. L., V. R. Iyer, and P. O. Brown (1997) Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278: 680–686.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niina Tohmola.

Additional information

These authors contributed equally to the work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tohmola, N., Ahtinen, J., Pitkänen, JP. et al. On-line high performance liquid chromatography measurements of extracellular metabolites in an aerobic batch yeast (Saccharomyces cerevisiae) culture. Biotechnol Bioproc E 16, 264–272 (2011). https://doi.org/10.1007/s12257-010-0147-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-010-0147-3

Keywords

Navigation