Skip to main content
Log in

Properties and secondary structure of tannase from Penicillium herquei

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

A tannase with a molecular mass of 72 kDa was obtained from Penicillium herquei isolated from valonia acorns following fermentation in a 5 L bioreactor. This tannase showed optimum activity at pH 6.0 and 30°C. The enzyme was inhibited by Fe3+, Zn2+, dithiothrietol (DTT), β-mercaptoethanol, formaldehyde, and ethanol, and induced by K+, Mn2+, Tween 80, and Triton X-100. The Michaelis constant (K m) and the second-order constant (k cat/K m) values of the tannase for propyl gallate (PG) were 0.62 mM and 174.1 mM/sec. The circular dichroism (CD) spectra indicated that the secondary structure of the tannase contained 14% α helix, 32.4% anti-parallel β-sheet, 4.8% β-sheet, 18.8% β-turn, and 30% random coil. Native tannase in ultrapure water manifested as spherical nano-particle aggregates with diameters ranging from 50 to 300 nm determined by atomic force microscopy (AFM).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sabu, A., A. Pandey, M. J. Daud, and G. Szakacs (2005) Tamarind seed powder and palm kernel cake: two novel agro residues for the production of tannase under solid state fermentation by Aspergillus niger ATCC 16620. Biores. Technol. 96: 1223–1228.

    Article  CAS  Google Scholar 

  2. Belmares, R., J. C. C. Esquivel, R. R. Herrera, A. R. Coronel, and C. N. Aguilar (2004) Microbial production of tannase: An enzyme with potential use in food industry. Lebensm. Wiss. Technol. 37: 857–864.

    Article  CAS  Google Scholar 

  3. Yu, X. and Y. Li (2006) Kinetics and thermodynamics of synthesis of propyl gallate by mycelium-bound tannase from Aspergillus niger in organic solvent. J. Mol. Catal. B Enzym. 40: 44–50.

    Article  CAS  Google Scholar 

  4. Kumar, B., J. Sharma, and R. Singh (2007) Production of tannase from Aspergillus ruber under solid-state fermentation using jamun (Syzygium cumini) leaves. Microbiol. Res. 162: 384–390.

    Article  CAS  Google Scholar 

  5. Lekha, P. K. and B. K. Lonsane (1997) Production and application of tannin acyl hydrolase: State of the art. Adv. Appl. Microbiol. 44: 215–260.

    Article  CAS  Google Scholar 

  6. Vaquero, I., A. Marcobal, and R. Munoz (2004) Tannase activity by lactic acid bacteria isolated from grape must and wine. Int. J. Food Microbiol. 96: 199–204.

    Article  CAS  Google Scholar 

  7. Aguilar, C. N. and G. Gutierrez-Sanchez (2001) Review: Sources, properties, applications and potential uses of tannin acyl hydrolase. Food Sci. Technol. Int. 7: 373–383.

    CAS  Google Scholar 

  8. Nuero, O. M. and F. Reyes (2002) Enzymes for animal feeding from Penicillium chrysogenum mycelia wastes from penicillin manufacture. Lett. Appl. Microbiol. 34: 413–416.

    Article  CAS  Google Scholar 

  9. Mondal, K. C., D. Banerjee, R. Banerjee, and B. R. Pati (2001) Production and characterization of tannase from Bacillus cereus KBR9. J. Gen. Appl. Microbiol. 47: 263–267.

    Article  CAS  Google Scholar 

  10. Pepi, M., L. R. Lampariello, R. Altieri, A. Esposito, G. Perra, M. Renzi, A. Lobianco, A. Feola, S. Gasperini, and S. E. Focardi (2010) Tannic acid degradation by bacterial strains Serratia spp. and Pantoea sp. isolated from olive mill waste mixtures isolated from olive mill waste mixtures. Int. Biodeterior. Biodegrad. 64: 73–80.

    CAS  Google Scholar 

  11. Aguilar, C. N., R. Rodriguez, G. Gutierrez-Sanchez, C. Augur, E. Favela-Torres, L. A. Prado-Barragan, A. Ramirez-Coronel, and J. C. Contreras-Esquivel (2007) Microbial tannases: Advances and perspectives. Appl. Microbiol. Biotechnol. 76: 47–59.

    Article  CAS  Google Scholar 

  12. Raama, N., B. Mahendran, C. Jaganathan, S. Sukumar, and V. Chandrasekaran (2010) Optimisation of extracellular tannase production from Paecilomyces variotii. World J. Microbiol. Biotechnol. 26: 1033–1039.

    Article  Google Scholar 

  13. Huang, W., J. Ni, and A. J. L. Borthwick (2005) Biosynthesis of valonia tannin hydrolase and hydrolysis of valonia tannin to ellagic acid by Aspergillus SHL 6. Proc. Biochem. 40: 1245–1249.

    Article  CAS  Google Scholar 

  14. Trevino-Cueto, B., M. Luis, J. C. Contreras-Esquivel, R. Rodriguez, A. Aguilera, and C. N. Aguilar (2007) Gallic acid and tannase accumulation during fungal solid state culture of a tanninrich desert plant (Larrea tridentata Cov.). Biores. Technol. 98: 721–724.

    Article  CAS  Google Scholar 

  15. Batra, A. and R. K. Saxena (2005) Potential tannase producers from the genera Aspergillus and Penicillium. Proc. Biochem. 40: 1553–1557.

    Article  CAS  Google Scholar 

  16. Iibuchi, S., Y. Minoda, and K. Yamada (1968) Studies on tannin acyl hydrolase of microorganism Part III. Purification of enzyme and some properties of it. Agric. Biol. Chem. 32: 803–809.

    Article  CAS  Google Scholar 

  17. Kasieczka-Burneck, M., K. Karina, H. Kalinowska, M. Knap, and M. Turkiewicz (2007) Purification and characterization of two cold-adapted extracellular tannin acyl hydrolases from an Antarctic strain Verticillium sp. P9. Appl. Microbiol. Biotechnol. 77: 77–89.

    Article  Google Scholar 

  18. Sharma, S., T. K. Bhat, and R. K. Dawra (2000) A spectrophotometric method for assay of tannase using rhodanine. Anal. Biochem. 279: 85–89.

    Article  CAS  Google Scholar 

  19. Bradford, M. M. (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem. 72: 248–254.

    Article  CAS  Google Scholar 

  20. Iwamoto, K., H. Tsuruta, Y. Nishitaini, and R. Osawa (2008) Identification and cloning of a gene encoding tannase (tannin acylhydrolase) from Lactobacillus plantarum ATCC 14917T. Syst. Appl. Microbiol. 31: 269–277.

    Article  CAS  Google Scholar 

  21. Hatamoto, O., T. Watarai, M. Kikuchi, K. Mizusawa, and H. Sekine (1996) Cloning and sequencing of the gene encoding tannase and a structural study of the tannase subunit from Aspergillus oryzae. Gene 175: 215–221.

    Article  CAS  Google Scholar 

  22. Zhong, X., L. Peng, S. Zheng, Z. Sun, Y. Ren, M Dong, and A. Xu (2004) Secretion, purification, and characterization of a recombinant Aspergillus oryzae tannase in Pichia pastoris. Protein Expr. Purif. 36: 165–169.

    Article  CAS  Google Scholar 

  23. Barthomeuf, C., F. Regerat, and H. Pourrat (1994) Production, purification and characterization of a tannase from Aspergillus niger LCF 8. J. Ferment. Bioeng. 77: 320–323.

    Article  CAS  Google Scholar 

  24. Sharma, S., L. Agarwal, and R. K. Saxena (2008) Purification, immobilization and characterization of tannase from Penicillium variable. Biores. Technol. 99: 2544–2551.

    Article  CAS  Google Scholar 

  25. Rajakumar, G. S. and S. C. Nandy (1983) Isolation, purification, and some properties of Penicillium chrysogenum tannase. Appl. Environ. Microbiol. 46: 525–527.

    CAS  Google Scholar 

  26. Mahapatra, K., R. K. Nanda, S. S. Bag, R. Banerjee, A. Pandey, and G. Szakacs (2005) Purification, characterization and some studies on secondary structure of tannase from Aspergillus awamori nakazawa. Proc. Biochem. 40: 3251–3254.

    Article  CAS  Google Scholar 

  27. Sharma, S., T. K. Bhat, and R. K. Dawra (1999) Isolation, purification and properties of tannase from Aspergillus niger van Tieghem. World J. Microbiol. Biotechnol. 15: 673–677.

    Article  CAS  Google Scholar 

  28. Mahendran, B., N. Raman, and D. J. Kim (2006) Purification and characterization of tannase from Paecilomyces variotii: hydrolysis of tannic acid using immobilized tannase. Appl. Microbiol. Biotechnol. 70: 444–450.

    Article  CAS  Google Scholar 

  29. Curiel, J. A., H. Rodriguez, I. Acebron, J. M. Mancheno, B. de las Rivas, and R. Munoz (2009) Production and physicochemical properties of recombinant Lactobacillus plantarum tannase. J. Agric. Food Chem. 57: 6224–6230.

    Article  CAS  Google Scholar 

  30. Chatterjee, R., A. Dutta, R. Banerjee, and B. C. Bhattacharyya (1996) Production of tannase by solid-state fermentation. Bioproc. Eng. 14: 159–162.

    Article  CAS  Google Scholar 

  31. Ramirez-Coronel, M. A., G. Viniegra-Gonzalez, A. Darvill, and C. Augur (2003) A novel tannase from Aspergillus niger with â-glucosidase activity. Microbiol. 149: 2941–2946.

    Article  CAS  Google Scholar 

  32. Kar, B., R. Banerjee, and B. C. Bhattacharyya (2003) Effect of additives on the behavioural properties of tannin acyl hydrolase. Proc. Biochem. 38: 1285–1293.

    Article  CAS  Google Scholar 

  33. Sabu, A., S. G. Kiran, and A. Pandey (2005) Purification and characterization of tannin acyl hydrolase from Aspergillus niger ATCC 16620. J. Food Technol. Biotechnol. 43: 133–138.

    CAS  Google Scholar 

  34. Rodriguez, H., B. de las Rivas, C. Gomez-Cordoves, and R. Munoz (2008) Characterization of tannase activity in cell-free extracts of Lactobacillus plantarum CECT 748T. Int. J. Food. Microbiol. 121: 92–98.

    Article  CAS  Google Scholar 

  35. Battestin, V. and G. A. Macedo (2007) Effects of temperature, pH and additives on the activity of tannase produced by Paecilomyces variotii. Electron. J. Biotechnol. 10: 191–199.

    Article  CAS  Google Scholar 

  36. Bhardwaj, R., B. Singh, and T. K. Bhat (2003) Purification and characterization of tannin acyl hydrolase from Aspergillus niger MTCC 2425. J. Basic Microbiol. 43: 449–461.

    Article  CAS  Google Scholar 

  37. Farias, G. M., C. Gorbea, J. R. Elkins, and G. J. Griffin (1994) Purification, characterization, and substrate relationships of the tannase from Cryphonectria parasitica. Physiol. Mol. Plant Pathol. 44: 51–63.

    Article  CAS  Google Scholar 

  38. Kelly, S. M. and N. C. Price (2000) The use of circular dichroism in the investigation of protein structure and function. Curr. Protein Pept. Sci. 1: 349–384.

    Article  CAS  Google Scholar 

  39. Liu, X., X. Xu, J. Chen, W. Liu, and Q. Liu (2005) Effects of metal ions and an inhibitor on the fluorescence and activity of acutolysin A from Agkistrodon acutus venom. Indian J. Biochem. Biophys. 42: 100–105.

    CAS  Google Scholar 

  40. Gaczynska, M. and P. A. Osmulski (2008) AFM of biological complexes: what can we learn? Curr. Opin. Colloid Interface Sci. 13: 351–367.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wen Huang, Yang He or Xiao-Hua Wu.

Additional information

Two authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiu, Y., Niu, H., Huang, W. et al. Properties and secondary structure of tannase from Penicillium herquei . Biotechnol Bioproc E 16, 858–866 (2011). https://doi.org/10.1007/s12257-011-0123-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-011-0123-6

Keywords

Navigation