Skip to main content
Log in

Cellobiose hydrolysis using acid-functionalized nanoparticles

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Mineral acids have been used effectively for the pretreatment of cellulosic biomass to improve sugar recovery and promote its conversion to ethanol; however, substantial capital investment is required to enable separation of the acid, and corrosion-resistant materials are necessary. Disposal and neutralization costs are also concerns because they can decrease the economic feasibility of the process. In this work, three acid-functionalized nanoparticles were synthesized for pretreatment and hydrolysis of lignocellulosic biomass. Silica-protected cobalt spinel ferrite nanoparticles were functionalized with perfluoroalkylsulfonic acid (PFS), alkylsulfonic acid (AS), and butylcarboxylic acid (BCOOH) groups. These nanoparticles were magnetically separated from the reaction media and reused. TEM images showed that the average diameter was 2 nm for both PFS and BCOOH nanoparticles and 7 nm for AS nanoparticles. FTIR confirmed the presence of sulfonic and carboxylic acid functional groups. Ion exchange titration measurements yielded 0.9, 1.7, and 0.2 mmol H+/g of catalyst for PFS, AS, and BCOOH nanoparticles, respectively. Elemental analysis results indicated that PFS and AS nanoparticles had 3.1 and 4.9% sulfur, respectively. Cellobiose hydrolysis was used as a model reaction to evaluate the performance of acid-functionalized magnetic nanoparticles for breaking β-(1→4) glycosidic bonds. Cellobiose conversion of 78% was achieved when using AS nanoparticles as the catalyst at 175°C for 1 h, which was significantly higher than the conversion for the control experiment (52%). AS nanoparticles retained more than 60% of their sulfonic acids groups after the first run, and 65 and 60% conversions were obtained for the second and third runs, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allred, C. S., D. Arnold, T. J. Barrett, A. Beehler, A. Bement, G. Buchanan, T. C. Dorr, G. Gray, S. Hays, A. Karsner, R. Orbach, P. Swagel, and J. Turner (2008) National Biofuels Action Plan.

  2. U.S. Energy Information Administration, Annual Energy Review 2009. www.eia.doe.gov.

  3. Teymouri, F., L. Laureano-Perez, H. Alizadeh, and B. Dale (2004) Ammonia Fiber Explosion Treatment of Corn Stover. Appl. Biochem. Biotechnol. 115: 951–963.

    Article  Google Scholar 

  4. Herrera, A., S. J. Tellez-Luis, J. J. Gonzalez-Cabriales, J. A. Ramirez, and M. Vazquez (2004) Effect of the hydrochloric acid concentration on the hydrolysis of sorghum straw at atmospheric pressure. J. Food Eng. 63: 103–109.

    Article  Google Scholar 

  5. Jacobsen, S. E. and C. E. Wyman (2002) Xylose monomer and oligomer yields for uncatalyzed hydrolysis of sugarcane bagasse hemicellulose at varying solids concentration. 41: 1454–1461.

    CAS  Google Scholar 

  6. Liu, C. G. and C. E. Wyman (2005) Partial flow of compressed-hot water through corn stover to enhance hemicellulose sugar recovery and enzymatic digestibility of cellulose. Bioresour. Technol. 96: 1978–1985.

    Article  CAS  Google Scholar 

  7. Corredor, D. Y., X. S. Sun, J. M. Salazar, K. L. Hohn, and D. Wang (2008) Enzymatic hydrolysis of soybean hulls using dilute acid and modified steam-explosion pretreatments. J. Biobased Mater. Bio. 2: 43–50.

    Article  Google Scholar 

  8. Viola, E., F. Nanna, E. Larocca, M. Cardinale, D. Barisano, and F. Zimbardi (2007) Acid impregnation and steam explosion of corn stover in batch processes. Ind. crop prod. 26: 195–206.

    Article  Google Scholar 

  9. U.S. Department of Energy, Concentrated Acid Hydrolysis. http://www1.eere.energy.gov/biomass/printable_versions/concentrated_acid.html.

  10. Lee, Y. and S. Kim (2002) Diffusion of sulfuric acid within lignocellulosic biomass particles and its impact on dilute-acid pretreatment. Bioresour. Technol. 83: 165–171.

    Article  Google Scholar 

  11. Mosier, N. S., C. M. Ladisch, and M. R. Ladisch (2002) Characterization of acid catalytic domains for cellulose hydrolysis and glucose degradation. Biotechnol. Bioeng. 79: 610–618.

    Article  CAS  Google Scholar 

  12. Oliva, J. M., M. J. Negro, and F. Saez (2006) Effects of acetic acid, furfural and catechol combinations on ethanol fermentation of Kluyveromyces marxianus. Proc. Biochem. 41: 1223–1228.

    Article  CAS  Google Scholar 

  13. Nilsson, A., M. F. Gorwa-Grauslund, B. Hahn-Hagerdal, and G. Liden (2005) Cofactor dependence in furan reduction by Saccharomyces cerevisiae in fermentation of acid-hydrolyzed lignocellulose. Appl. Environ. Microb. 71: 7866–7871.

    Article  CAS  Google Scholar 

  14. Alvaro, (2005) “Nafion”-functionalized mesoporous MCM-41 silica shows high activity and selectivity for carboxylic acid esterification and Friedel-Crafts acylation reactions. J. Catal. 231: 48–58.

    Article  CAS  Google Scholar 

  15. Bootsma, J. A. and B. H. Shanks (2007) Cellobiose hydrolysis using organic-inorganic hybrid mesoporous silica catalysts. Appl. Catal. A-Gen. 327: 44–51.

    Article  CAS  Google Scholar 

  16. Lien, H. L. and W. X. Zhang (2007) Removal of methyl tertbutyl ether (MTBE) with Nafion. J. Hazard Mater. 144: 194–199.

    Article  CAS  Google Scholar 

  17. Harmer, M. A., C. Junk, V. Rostovtsev, L. G. Carcani, J. Vickery, and Z. Schnepp (2007) Synthesis and applications of superacids. 1,1,2,2-tetrafluoroethanesulfonic acid, supported on silica. Green Chem. 9: 30–37.

    Article  CAS  Google Scholar 

  18. Suganuma, S., K. Nakajima, M. Kitano, D. Yamaguchi, H. Kato, S. Hayashi, and M. Hara (2008) Hydrolysis of cellulose by amorphous carbon bearing SO3H, COOH, and OH groups. J. Am. Chem. Soc. 130: 12787–12793.

    Article  CAS  Google Scholar 

  19. Onda, A., T. Ochi, and K. Yanagisawa (2008) Selective hydrolysis of cellulose into glucose over solid acid catalysts. Green Chem. 10: 1033–1037.

    Article  CAS  Google Scholar 

  20. Dhepe, P. and R. Sahu (2010) A solid-acid-based process for the conversion of hemicellulose. Green Chem. 12: 2153–2156.

    Article  CAS  Google Scholar 

  21. Dhepe, P. L., M. Ohashi, S. Inagaki, M. Ichikawa, and A. Fukuoka (2005) Hydrolysis of sugars catalyzed by water-tolerant sulfonated mesoporous silicas. Catal. Lett. 102: 163–169.

    Article  CAS  Google Scholar 

  22. Corma, A. and H. Garcia (2006) Silica-bound homogeneous catalysts as recoverable and reusable catalysts in organic synthesis. Adv. Synth. Catal. 348: 1391–1412.

    Article  CAS  Google Scholar 

  23. Yoon, T., W. Lee, Y. Oh, and J. Lee (2003) Magnetic nanoparticles as a catalyst vehicle for simple and easy recycling. New J. Chem. 27: 227–229.

    Article  CAS  Google Scholar 

  24. Shimizu, K., H. Furukawa, N. Kobayashi, Y. Itaya, and A. Satsuma (2009) Effects of Bronsted and Lewis acidities on activity and selectivity of heteropolyacid-based catalysts for hydrolysis of cellobiose and cellulose. Green Chem. 11: 1627–1632.

    Article  CAS  Google Scholar 

  25. Phan, N. T. S. and C. W. Jones (2006) Highly accessible catalytic sites on recyclable organosilane-functionalized magnetic nanoparticles: An alternative to functionalized porous silica catalysts. J. Mol. Catal. A-Chem. 253: 123–131.

    Article  CAS  Google Scholar 

  26. Gill, C. S., B. A. Price, and C. W. Jones (2007) Sulfonic acidfunctionalized silica-coated magnetic nanoparticle catalysts. J. Catal. 251: 145–152.

    Article  CAS  Google Scholar 

  27. Rondinone, A. J., A. C. S. Samia, and Z. J. Zhang (1999) Superparamagnetic relaxation and magnetic anisotropy energy distribution in CoFe2O4 spinel ferrite nanocrystallites. J. Phys. Chem. B. 103: 6876–6880.

    Article  CAS  Google Scholar 

  28. Melero, J. A., G. D. Stucky, R. van Grieken, and G. Morales (2002) Direct syntheses of ordered SBA-15 mesoporous materials containing arenesulfonic acid groups. J. Mater. Chem. 12: 1664–1670.

    Article  CAS  Google Scholar 

  29. Sluiter, A., B. Hames, R. Ruiz, C. Scarlata, J. Sluiter, and D. Templeton (2008) Determination of Sugars, Byproducts, and Degradation Products in Liquid Fraction Process Samples. NREL/TP-510-42623.

  30. Zhao, X. S., G. Q. Lu, and X. Hu (2000) Characterization of the structural and surface properties of chemically modified MCM-41 material. Micropor. Mesopor. Mater. 41: 37–47.

    Article  CAS  Google Scholar 

  31. Alvaro, M., A. Corma, D. Das, V. Fornes, and H. Garcia (2005) “Nafion”-functionalized mesoporous MCM-41 silica shows high activity and selectivity for carboxylic acid esterification and Friedel-Crafts acylation reactions. J. Catal. 231: 48–55.

    Article  CAS  Google Scholar 

  32. Blanco Brieva, G., J. Campos Martin, M. de Frutos, and J. Fierro (2008) Preparation, characterization, and acidity evaluation of perfluorosulfonic Acid-functionalized silica catalysts. 47: 8005–8010.

    CAS  Google Scholar 

  33. Scaranto, J., A. P. Charmet, and S. Giorgianni (2008) IR spectroscopy and quantum-mechanical studies of the adsorption of CH2CClF on TiO2. J. Phys. Chem. C. 112: 9443–9447.

    Article  CAS  Google Scholar 

  34. Kim, T. H., Y. H. Im, and Y. B. Hahn (2003) Plasma enhanced chemical vapor deposition of low dielectric constant SiCFO thin films. Chem. Phys. Lett. 368: 36–40.

    Article  CAS  Google Scholar 

  35. Biloiu, C., I. A. Biloiu, Y. Sakai, Y. Suda, and A. Ohta (2004) Amorphous fluorocarbon polymer (a-C: F) films obtained by plasma enhanced chemical vapor deposition from perfluorooctane (C8F18) vapor I: Deposition, morphology, structural and chemical properties. J. Vac. Sci. Technol. A. 22: 1158–1165.

    Article  CAS  Google Scholar 

  36. Kim, S., T. Pham, J. Lee, and S. Roh (2010) Releasing properties of proteins on SBA-15 spherical nanoparticles functionalized with aminosilanes. J. Nanosci. Nanotechno. 10: 3467–3472.

    Article  CAS  Google Scholar 

  37. Colilla, M., I. Izquierdo-Barba, S. Sanchez-Salcedo, J. Fierro, J. Hueso, and M. Vallet-Regi (2010) Synthesis and characterization of zwitterionic SBA-15 nanostructured materials. Chem. Mater. 22: 6459–6466.

    Article  CAS  Google Scholar 

  38. Buruiana, T., V. Melinte, L. Stroea, and E. Buruiana (2009) Urethane dimethacrylates with carboxylic groups as potential dental monomers. synthesis and properties. Polym. J. 41: 978–987.

    Article  CAS  Google Scholar 

  39. Senapati, K., C. Borgohain, and P. Phukan (2011) Synthesis of highly stable CoFe2O4 nanoparticles and their use as magnetically separable catalyst for Knoevenagel reaction in aqueous medium. 339: 24–31.

    CAS  Google Scholar 

  40. Naseri, M., E. Saion, H. Ahangar, A. Shaari, and M. Hashim (2010) Simple synthesis and characterization of cobalt ferrite nanoparticles by a thermal treatment method. J. Nanomat. 907686: 8.

    Google Scholar 

  41. Hamoudi, S., S. Royer, and S. Kaliaguine (2004) Propyl- and arene-sulfonic acid functionalized periodic mesoporous organosilicas. 71: 17–25.

    CAS  Google Scholar 

  42. Dube, D., M. Rat, W. Shen, F. Beland, and S. Kaliaguine (2009) Perfluoroalkylsulfonic acid-functionalized periodic mesostructured organosilica: A strongly acidic heterogeneous catalyst. 44: 6683–6692.

    CAS  Google Scholar 

  43. Dube, D., M. Rat, W. Shen, B. Nohair, F. Beland, and S. Kaliaguine (2009) Perfluorinated alkylsulfonic acid functionalized periodic mesostructured organosilica: A new acidic catalyst. 358: 232–239.

    CAS  Google Scholar 

  44. Van Rhijn, W. M., D. E. De Vos, B. F. Sels, W. D. Bossaert, and P. A. Jacobs (1998) Sulfonic acid functionalized ordered mesoporous materials as catalysts for condensation and esterification reactions. Chem. Commun.: 317–318.

  45. Morales, G., G. Athens, B. Chmelka, R. van Grieken, and J. Melero (2008) Aqueous-sensitive reaction sites in sulfonic acid-functionalized mesoporous silicas. 254: 205–217.

    CAS  Google Scholar 

  46. Bobleter, O. (1994) Hydrothermal degradation of polymers derived from plants. Prog. Polym. Sci. 19: 797–841.

    Article  CAS  Google Scholar 

  47. Corma, A., D. Das, V. Fornes, H. Garcia, and M. Alvaro (2004) Single-step preparation and catalytic activity of mesoporous MCM-41 and SBA-15 silicas functionalized with perfluoroalkylsulfonic acid groups analogous to Nafion (R). Chem. Commun. 8: 956–957.

    Google Scholar 

  48. Beamson, G. and M. Alexander (2004) Angle-resolved XPS of fluorinated and semi-fluorinated side-chain polymers. Surf. Interface Anal. 36: 323–333.

    Article  CAS  Google Scholar 

  49. Bonn, G. and O. Bobleter (1983) Determination of the hydrothermal degradation products of D-(U-C14) glucose and D-(U-C-14) fructose by TLC. J. Radioanal. Chem. 79: 171–177.

    Article  CAS  Google Scholar 

  50. Xiang, Q., Y. Lee, and R. Torget (2004) Kinetics of glucose decomposition during dilute-acid hydrolysis of lignocellulosic biomass. Appl. Biochem. Biotech. 113: 1127–1138.

    Article  Google Scholar 

  51. Woolf, A. (1954) Fluorosulphonic acid 1. Some properties of the aqueous solution: 2840–2843.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peña, L., Ikenberry, M., Ware, B. et al. Cellobiose hydrolysis using acid-functionalized nanoparticles. Biotechnol Bioproc E 16, 1214–1222 (2011). https://doi.org/10.1007/s12257-011-0166-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-011-0166-8

Keywords

Navigation