Skip to main content
Log in

Anthracene biodegradation under nitrate-reducing condition and associated microbial community changes

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Anaerobic biodegradation of polycyclic aromatic hydrocarbons (PAHs) and degraders in the subsurface environment have aroused increasing attention. Molecular techniques are especially useful when isolates are hard to obtain. Nitrate-reducing microcosms inoculated with aquifer sediment were constructed to investigate anthracene biodegradation. The associated microbial community changes were characterized using terminal restriction fragment length polymorphism analysis (TRFLP) in combination with 16S rRNA gene clone library analysis. A nearly complete removal of anthracene was achieved after an eighty day incubation under the nitrate-reducing condition. The two molecular techniques revealed a significant shift of microbial community structure, coupled with anthracene biodegradation. Species of genera Paracoccus, Herbaspirillum, Azotobacter, and Rhodococcus were grouped into four major operational taxonomic units (OTUs) in the library that was constructed with the microcosm sample on day 80. The enrichment of these genera might have links to anthracene biodegradation under the nitrate-reducing condition. Microbial consortia likely played a part in anthracene degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rogers, S. W., S. K. Ong, and T. B. Moorman (2007) Mineralization of PAHs in coal-tar impacted aquifer sediments and associated microbial community structure investigated with FISH. Chemosphere 69: 1563–1573.

    Article  CAS  Google Scholar 

  2. Russold, S., M. Schirmer, M. Piepenbrink, and K. Schirmer (2006) Modeling the impact of benzene source zone on the transport behavior of PAHs in groundwater. Environ. Sci. Technol. 40: 3565–3571.

    Article  CAS  Google Scholar 

  3. Meckenstock, R. U., M. Safinowski, and C. Griebler (2004) Anaerobic degradation of polycyclic aromatic hydrocarbons. FEMS Microbiol. Ecol. 49: 27–36.

    Article  CAS  Google Scholar 

  4. Hutchins, S. R., D. E. Miller, and A. Thomas (1998) Combined laboratory/field study on the use of nitrate for in situ bioremediation of a fuel-contaminated aquifer. Environ. Sci. Technol. 32: 1832–1840.

    Article  CAS  Google Scholar 

  5. Lu, X. Y., T. Zhang, H. H. P Fang, K. M. Y. Leung, and G. Zhang (2011) Biodegradation of naphthalene by enriched marine denitrifying bacteria. Int. Biodeterior. Biodegrad. 65: 204–211.

    Article  CAS  Google Scholar 

  6. Rockne, K. J. and S. E. Strand (2001) Anaerobic biodegradation of naphthalene, phenanthrene, and biphenyl by a denitrifying enrichment culture. Water Res. 35: 291–299.

    Article  CAS  Google Scholar 

  7. Bregnard, T. P. A., P. Höhener, A. Häner, and J. Zeyer (1996) Degradation of weathered diesel fuel by microorganisms from a contaminated aquifer in aerobic and anaerobic microcosms. Environ. Toxicol. Chem. 15: 299–307.

    Article  CAS  Google Scholar 

  8. Durant, N. D., L. P. Wilson, and E. J. Bouwer (1995) Microcosms studies of subsurface PAH-degrading bacteria from a former manufactured gas plant. J. Contam. Hydrol. 17: 213–237.

    Article  CAS  Google Scholar 

  9. Zhang, S. Y., Q. F. Wang, R. Wan, and S. G. Xie (2011) Changes in bacterial community of anthracene bioremediation in municipal solid waste composting soil. J. Zhejiang Univ.-Sci. B 12: 760–768.

    Article  CAS  Google Scholar 

  10. Bamforth, S. M. and L. Singleton (2005) Bioremediation of polycyclic aromatic hydrocarbons, current knowledge and future directions. J. Chem. Technol. Biotechnol. 80: 723–736.

    Article  CAS  Google Scholar 

  11. Wong, J. W. C., K. M. Lai, C. K. Wan, K. K. Ma, and M. Fang (2002) Isolation and optimization of PAH-degradative bacteria from contaminated soil for PAHs bioremediation. Water Air Soil Pollut. 139: 1–13.

    Article  CAS  Google Scholar 

  12. McNally, D. L., J. R. Mihelcic, and D. R. Lueking (1998) Biodegradation of three- and four-ring polycyclic aromatic hydrocarbons under aerobic and denitrifying conditions. Environ. Sci. Technol. 32: 2633–2639.

    Article  CAS  Google Scholar 

  13. Rockne, K. J., J. C. Chee-Sanford, R. A. Sanford, B. P. Hedlund, J. T. Staley, and S. E. Strand (2000) Anaerobic naphthalene degradation by microbial pure cultures under nitrate reducing conditions. Appl. Environ. Microbiol. 66: 1595–1601.

    Article  CAS  Google Scholar 

  14. Zhang, S. Y., Q. F. Wang, and S. G. Xie (2011) Microbial community changes in contaminated soils in response to phenanthrene amendment. Int. J. Environ. Sci. Tech. 8: 321–330.

    CAS  Google Scholar 

  15. Chang, W., Y. S. Um, and T. R. P. Holoman (2005) Molecular characterization of polycyclic aromatic hydrocarbon (PAH)-degrading methanogenic communities. Biotechnol. Progr. 21: 682–688.

    Article  CAS  Google Scholar 

  16. Kim, M., S. Bae, M. Seol, J. H. Lee, and Y. S. Oh (2008) Monitoring nutrient impact on bacterial community composition during bioremediation of anoxic PAH-contaminated sediment. J. Microbiol. 46: 615–623.

    Article  CAS  Google Scholar 

  17. Hayes, L. A. and D. R. Lovley (2002) Specific 16S rDNA sequences associated with naphthalene degradation under sulfate-reducing conditions in harbor sediments. Microb. Ecol. 43: 134–145.

    Article  CAS  Google Scholar 

  18. Zhang, S. Y., Q. F. Wang, and S. G. Xie (2011) Stable isotope probing identifies anthracene degraders under methanogenic conditions. Biodegradation doi:101007/s10532-011-9501-1.

  19. Liu, W. T., T. L. Marsh, H. Cheng, and L. J. Forney (1997) Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl. Environ. Microbiol. 63: 4516–4522.

    CAS  Google Scholar 

  20. Schloss, P. D. and J. Handelsman (2005) Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl. Environ. Microbiol. 71: 1501–1506.

    Article  CAS  Google Scholar 

  21. Tamura, K., J. Dudley, M. Nei, and S. Kumar (2007) MEGA4, molecular evolutionary genetics analysis, MEGA software version 4.0. Mol. Biol. Evol. 24: 1596–1599.

    Article  CAS  Google Scholar 

  22. Wang, Q., G. M. Garrity, J. M. Tiedje, and J. R. Cole (2007) Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73: 5261–5267.

    Article  CAS  Google Scholar 

  23. Dou, J. F., X. Liu, and A. Z. Ding (2009) Anaerobic degradation of naphthalene by the mixed bacteria under nitrate reducing conditions. J. Hazard. Mater. 165: 325–331.

    Article  CAS  Google Scholar 

  24. Grant, R. J., L. M. Muckian, N. J. W. Clipson, and E. M. Doyle (2007) Microbial community changes during the bioremediation of creosote-contaminated soil. Lett. Appl. Microbiol. 44: 293–300.

    Article  CAS  Google Scholar 

  25. Muckian, L. M., R. J. Grant, N. J. W. Clipson, and E. M. Doyle (2009) Bacterial community dynamics during bioremediation of phenanthrene- and fluoranthene-amended soil. Int. Biodeterior. Biodegrad. 63:52–56.

    Article  CAS  Google Scholar 

  26. Piskonen, R., M. Nyyssönen, T. Rajamäki, and M. Itävaara (2005) Monitoring of accelerated naphthalene biodegradation in a bioaugmented soil slurry. Biodegradation 16: 127–134.

    Article  CAS  Google Scholar 

  27. Vinas, M., J. Sabate, M. J. Espuny, and A. M. Solanas (2005) Bacterial community dynamics and polycyclic aromatic hydrocarbon degradation during bioremediation of heavily creosote-contaminated soil. Appl. Environ. Microbiol. 71: 7008–7018.

    Article  CAS  Google Scholar 

  28. Heylen, K., B. Vanparys, L. Wittebolle, W. Verstraete, N. Boon, and P. De Vos (2006) Cultivation of denitrifying bacteria: Optimization of isolation conditions and diversity study. Appl. Environ. Microbiol. 72: 2637–2643.

    Article  CAS  Google Scholar 

  29. Dullius, C. H., C. Y. Chen, and B. Schink (2011) Nitrate-dependent degradation of acetone by Alicycliphilus and Paracoccus strains and comparison of acetone carboxylase enzymes. Appl. Environ. Microbiol. 77: 6821–6825.

    Article  CAS  Google Scholar 

  30. Siddavattam, D., T. B. Karegoudar, S. K. Mudde, N. Kumar, R. Baddam, T. S. Avasthi, and N. Ahmed (2011) Genome of a novel isolate of Paracoccus denitrificans capable of degrading N,Ndimethylformamide. J. Bacteriol. 193: 5598–5599.

    Article  CAS  Google Scholar 

  31. Santoshkumar, M., Y. Veeranagouda, K. Lee, and T. B. Karegoudar (2011) Utilization of aliphatic nitrile by Paracoccus sp SKG isolated from chemical waste samples. Int. Biodeterior. Biodegrad. 65: 153–159.

    Article  CAS  Google Scholar 

  32. Guo, C. L., H. W. Zhou, Y. S. Wong, and N. F. Y. Tam (2005) Isolation of PAH-degrading bacteria from mangrove sediments and their biodegradation potential. Mar. Pollut. Bull. 51: 1054–1061.

    Article  CAS  Google Scholar 

  33. Tang, Y. B., X. Yang, F. Y. Chen, R. L. Jiang, and X. G. Wang (2011) Screening, identification and degrading gene assignment of a chrysene-degrading strain. Afr. J. Biotechnol. 10: 6549–6557.

    Article  CAS  Google Scholar 

  34. Zhang, H. M., A. Kallimanis, A. I. Koukkou, and C. Drainas (2004) Isolation and characterization of novel bacteria degrading polycyclic aromatic hydrocarbons from polluted Greek soils. Appl. Environ. Microbiol. 65: 124–131.

    CAS  Google Scholar 

  35. Ishii, S., N. Ashida, S. Otsuka, and K. Senoo (2011) Isolation of oligotrophic denitrifiers carrying previously uncharacterized functional gene sequences. Appl. Environ. Microbiol. 77: 338–342.

    Article  CAS  Google Scholar 

  36. Xu, H. X., H. Y. Wu, Y. P. Qiu, X. Q. Shi, G. H. He, J. F. Zhang, and J. C. Wu (2011) Degradation of fluoranthene by a newly isolated strain of Herbaspirillum chlorophenolicum from activated sludge. Biodegradation 22: 335–345.

    Article  CAS  Google Scholar 

  37. Juarez, M. J. B., A. Zafra-Gomez, B. Luzon-Toro, O. A. Ballesteros- Garcia, A. Navalon, J. Gonzalez, and J. L. Vilchez (2008) Gas chromatographic-mass spectrometric study of the degradation of phenolic compounds in wastewater olive oil by Azotobacter Chroococcum. Bioresour. Technol. 99: 2392–2398.

    Article  CAS  Google Scholar 

  38. Wackerow-Kouzova, N. D. (2005) Isolation and study of azobenzene-transforming soil bacteria. Appl. Biochem. Microbiol. 41: 162–164.

    Article  CAS  Google Scholar 

  39. Vig, K., D. K. Singh, H. C. Agarwal, A. K. Dhawan, and P. Dureja (2008) Soil microorganisms in cotton fields sequentially treated with insecticides. Ecotox. Environ. Safe. 69: 263–276.

    Article  CAS  Google Scholar 

  40. Haritash, A. K. and C. P. Kaushik (2009) Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): A review. J. Hazard. Mater. 169: 1–15.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuguang Xie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Wan, R., Zhang, S. et al. Anthracene biodegradation under nitrate-reducing condition and associated microbial community changes. Biotechnol Bioproc E 17, 371–376 (2012). https://doi.org/10.1007/s12257-011-0567-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-011-0567-8

Keywords

Navigation