Skip to main content
Log in

Optimized biodiesel production and environmental assessment of produced biodiesel

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Present study deals with the optimization of biodiesel production using rapeseed oil as feedstock and NaOCH3 as a catalyst. Optimization of different reaction parameters, such as catalyst concentration, reaction temperature, reaction time. and alcohol to oil molar ratio, was done using response surface methodology (RSM). The optimal experimental conditions for biodiesel production were as follows: catalyst concentration (%) 0.30, reaction temperature 55°C, molar ratio 6.75, and reaction time 60 min. Under these optimal conditions, 97.5 percentage yield of biodiesel was obtained. The observed and predicted values of rapeseed oil methyl esters (ROMEs) yield showed a linear relationship. The fuel properties such as specific gravity 0.876 ± 0.01, flash point 168 ± 0.48°C, fire point 197.8 ± 0.31°C, pour point −7 ± 0.060°C, cloud point −2 ± 0.10°C kinematic viscosity 4.42 ± 0.26 mm2/sec, and sulfur content 0.002 mg/Kg of the produced biodiesel show the suitability of rapeseed oil biodiesel, as fuel. Moreover, engine performance test of the Rapeseed oil biodiesel (rapeseed oil methyl esters, ROME) was examined. The results showed that CO and particulate matter (PM) emissions of the ROME were lower than those of diesel fuel. NOX emissions of the ROME were lower for B5, B20, B40, and B50, while higher for B80 and B100. These results show the environment benefits of biodiesel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Saifuddin, N. and K. H. Chua (2004) Production of ethyl ester (biodiesel) from used frying oil: Optimization of transesterification process using microwave irradiation. M. J. Chem. 6: 77–82.

    Google Scholar 

  2. Antolin, G., F. Y. Tinaut, Y. Briceno, V. Castano, C. Perez, and A. I. Ramirez (2002) Optimisation of biodiesel production by sunflower oil transesterification. Bioresour. Technol. 83: 111–114.

    Article  CAS  Google Scholar 

  3. Lang, X., A. K. Dalai, N. N. Bakhshi, M. J. Reaney, and P. B. Hertz (2001) Preparation and characterization of biodiesel from various bio oils. Bioresour. Technol. 80: 53–62.

    Article  CAS  Google Scholar 

  4. Schwab, A. W., M. O. Bagby, and B. Freedman (1987) Preparation and properties of diesel fuels from vegetable oils. Fuel 66: 1372–1378.

    Article  CAS  Google Scholar 

  5. Alencar, J. W., P. B. Alves, and A. A. Craveiro (1983) Pyrolysis of tropical vegetable oils. J. Agric. Food Chem. 31: 1268–1270.

    Article  CAS  Google Scholar 

  6. Freedman, B., E. H. Pryde, and T. L. Mounts (1984) Variables affecting the yield of fatty esters from transesterified vegetable oils. J. Am. Oil Chem. Soc. 61: 1638–1643.

    Article  CAS  Google Scholar 

  7. Encinar, J. M., J. F. Gonzalez, and A. Rodriguez-Reinares (2005) Biodiesel from used frying oil, variables affecting the yields and characteristics of the biodiesel. Ind. Eng. Chem. Res. 44: 5491–5499.

    Article  CAS  Google Scholar 

  8. Raymond, H. M. and C. M. Douglas (2002) Response surface methodology process and product optimization using designed experiments. 2nd ed. John Wiley & Sons, Inc.

  9. Rashid, U. and F. Anwar (2008) Production of biodiesel through optimized alkaline-catalyzed transesterification of rapeseed oil. Fuel 86: 265–271.

    Article  Google Scholar 

  10. Ma, F., L. D. Clements, and M. A. Hanna (1998) Effects of catalyst, free fatty acids and water on transesterification of beef tallow. Transactions of the ASAE 41: 1261–1264.

    CAS  Google Scholar 

  11. Vicente, G., M. Martinez, and J. Aracil (2004) Integrated biodiesel production: a comparison of different homogeneous catalysts system. Bioresour. Technol. 92: 297–305.

    Article  CAS  Google Scholar 

  12. Rashid, U. and F. Anwar (2008) Production of biodiesel through base-catalyzed transesterification of safflower oil using an optimized protocol. Energy & Fuels 22: 1306–1312.

    Article  CAS  Google Scholar 

  13. Rashid, U., F. Anwar, M. A. Tariq, A. Muhammad, and A. Mushtaq (2009) Optimization of alkaline transesterification of rice bran oil for biodiesel production using response surface methodology. J. Chem. Technol. Biotechnol. 84: 1364–1370.

    Article  CAS  Google Scholar 

  14. Pramanik, K. (2003) Properties and use of Jatropha curcas oil and diesel fuel blends in compression ignition engine. Renew Energy 28: 239–248.

    Article  CAS  Google Scholar 

  15. Wang, L. H., B. Yang, X. Q. Du, and C. Yi (2008) Optimisation of supercritical fluid extraction of flavonoids from Pueraria lobata. Food Chem. 108: 737–741.

    Article  CAS  Google Scholar 

  16. Leung, D. Y. C. and Y. Guo (2006) Transesterification of neat and used frying oil: Optimization for biodiesel production. Fuel Proc. Technol. 87: 883–890.

    Article  CAS  Google Scholar 

  17. Zhang, Y., M. A. Dube, D. D. McLean, and M. Kates (2003) Biodiesel production from waste cooking oil: Economic assessment and sensitivity analysis. Bioresour. Technol. 90: 229–240.

    Article  CAS  Google Scholar 

  18. Krisnangkura, K. and R. Simamaharnnop (1992) Continuous transmethylation of palm oil in an organic solvent. J. Am. Oil Chem. Soc. 69: 166–169.

    Article  CAS  Google Scholar 

  19. Alamu, O. J., M. A. Waheed, S. O. Jekayinfa, and T. A. Akintola (2007) Optimal transesterification duration for biodiesel production from nigerian palm kernel oil. Int. J. Agric. Eng. 9: 1–11.

    Google Scholar 

  20. Guo, Y. (2005) Alkaline-catalyzed production of biodiesel fuel from virgin canola oil and recycled waste oils. Ph. D. Thesis. Department of Mechanical Engineering, the University of Hong Kong, Hong Kong.

    Google Scholar 

  21. Eevera, T., K. Rajendran, and S. Saradha (2009) Biodiesel production process optimization and characterization to assess the suitability of the product for varied environmental conditions. Renew Energy 34: 762–765.

    Article  CAS  Google Scholar 

  22. Meher, L. C., V. S. S. Dharmagadda, and S. N. Naik (2006) Optimization of Alkali-catalyzed transesterification of Pongamia Pinnata oil for production of biodiesel. Bioresour. Technol. 97: 1392–1397.

    Article  CAS  Google Scholar 

  23. Tat, M. E., J. H. Gerpen, and P. S. Wang (2007) Fuel property effects on injection timing, ignition timing, and oxides of nitrogen emissions from biodiesel-fueled engines. Am. Soc. Agricultural Eng. 50: 1123–1128.

    CAS  Google Scholar 

  24. USEPA (2002) A Comprehensive Analysis of Biodiesel Impacts on Exhaust Emissions. Draft Technical Report 420-P-02-001. http://www.epa.gov/otaq/models/

  25. Ramadhas, A. S., C. Muraleedharan, and S. Jayaraj (2005) Performance and emission evaluation of a diesel engine fueled with methyl esthers of rubber seed oil. Renew. Energ. 30: 1789–1800.

    Article  CAS  Google Scholar 

  26. Puhan, S., N. Vedaraman, B. V. B. Ram, G. Sankarnarayanan, and K. Jeychandran, (2005) Mahua oil (madhuca indica seed oil) methyl ester as biodiesel preparation and emission characteristics. Biomass Bioenerg. 28: 87–93.

    Article  CAS  Google Scholar 

  27. Yücesu, H. S. and C. lkiliç (2006) Effect of cotton seed oil methyl ester on the performance and exhaust emission of a diesel engine. Energ Source Part A 28: 389–398.

    Article  Google Scholar 

  28. Rakopoulos, C. D., K. A. Antonopoulos, D. C. Rakopoulos, D. T. Hountalas, and E. G. Giakoumis (2006) Comparative performance and emissions study of a direct injection diesel engine using blends of diesel fuel with vegetable oils or bio-diesels of various origins. Energy Convers Manage 47: 3272–3287.

    Article  CAS  Google Scholar 

  29. Graboski, M. S. and R. L. McCormick (1998) Combustion of fat and vegetable oil derived fuels in diesel engines. Prog. Energy Combust Sci. 24: 125–164.

    Article  CAS  Google Scholar 

  30. Jeong, G. T., Y. T. Oh, and D. H. Park (2006) emission profile of rapeseed methyl ester and its blend in a diesel engine. Appl. Biochem. Biotech. 129: 165–178.

    Article  Google Scholar 

  31. Almeida, S. C. A., C. R. Belchior, M. V. G. Nascimento, L. S. R. Vieira, and G. Fleury (2002) Performance of a diesel generator fueled with palm oil. Fuel 81: 2097–2102.

    Article  Google Scholar 

  32. Coltrain, D. (2002) Biodiesel: Is it worth considering? The proceedings of’ Risk and Profit Conference’. August 15–16. Kansas State University, Holiday Inn, Manhattan, Kansas.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asif Mahmood.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saqib, M., Mumtaz, M.W., Mahmood, A. et al. Optimized biodiesel production and environmental assessment of produced biodiesel. Biotechnol Bioproc E 17, 617–623 (2012). https://doi.org/10.1007/s12257-011-0569-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-011-0569-6

Keywords

Navigation