Skip to main content
Log in

Chymotrypsin — Eudragit® complex formation

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Eudragit® L100 (EuL) and Eudragit® S100 (EuS) are synthetic polyanions differing on their electric charge density. They interact with chymotrypsin (ChTRP), a basic protein forming soluble and non-soluble complexes. The complex formation was studied by dynamic light scattering, isothermal titration calorimetry, native fluorescence emission, circular dichroism and thermodynamical thermal stability of the enzyme. EuS was able to bind 33 ChTRP molecules while EuL, 60. The binding of ChTRP to both Eu was slightly endothermic and the entropic factor was responsible for the soluble complexes formation. The ChTRP-Eu size increases with pH and the binding of ChTRP to Eu modifies the Eu hydrodynamic radium. The interaction of ChTRP with Eu did not modify its secondary or tertiary structure. The thermal stability of ChTRP was increased when it interacted with both Eu.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang, J., Z. He, and K. Hu (2000) Purification and characterization of β-mannanase from Bacillus licheniformis for industrial use. Biotechnol. Lett. 22: 1375–1378.

    Article  CAS  Google Scholar 

  2. Mazzaferro, L., J. D. Breccia, M. M. Andersson, B. Hitzmann, and R. Hatti-Kaul (2010) Polyethyleneimine-protein interactions and implications on protein stability. Int. J. Biol. Macromol. 47: 15–20.

    Article  CAS  Google Scholar 

  3. Tsuboi, A., T. Izumi, M. Hirata, J. Xia, P. L. Dubin, and E. Kokufuta (1996) Complexation of proteins with a strong polyanion in an aqueous salt-free system. Langmuir 12: 6295–6303.

    Article  CAS  Google Scholar 

  4. Cooper, C. L., P. L. Dubin, A. B. Kayitmazer, and S. Turksen (2005) Polyelectrolyte-protein complexes. Curr. Opin. Colloid Interface Sci. 10: 52–78.

    Article  CAS  Google Scholar 

  5. Gupta, M. N., D. Guoqiang, R. Kaul, and B. Mattiasson (1994) Purification of xylanase from Trichoderma viride by precipitation with an anionic polymer Eudragit S 100. Biotechnol. Tech. 8: 117–122.

    Article  CAS  Google Scholar 

  6. Cappella, L. V., V. Boeris, and G. Picó (2011) A simple method of chymotrypsin concentration and purification from pancreas homogenate using Eudragit® L100 and Eudragit® S100. J. Chromatogr. B. 879: 1003–1007.

    Article  CAS  Google Scholar 

  7. Harnsilawat, T., R. Pongsawatmanit, and D. J. McClements (2006) Characterization of β-lactoglobulin-sodium alginate interactions in aqueous solutions: A calorimetry, light scattering, electrophoretic mobility and solubility study. Food Hydrocolloids 20: 577–585.

    Article  CAS  Google Scholar 

  8. Boeris, V., D. Spelzini, J. Peleteiro Salgado, G. Picó, D. Romanini, and B. Farruggia (2008) Chymotrypsin-poly vinyl sulfonate interaction studied by dynamic light scattering and turbidimetric approaches. Biochim. Biophys. Acta Gen. Subj. 1780: 1032–1037.

    Article  CAS  Google Scholar 

  9. Pace, C. N. (1990) Measuring and increasing protein stability. Trends Biotechnol. 8: 93–98.

    Article  CAS  Google Scholar 

  10. Röhm GmbH & Co. KG Pharma Polymers. www.rohm.com.

  11. De Gennes, P. G., P. Pincus, R. M. Velasco, and F. Brochard (1976) Remarks on polyelectrolyte conformation. J. Phys. France 37: 1461–1473.

    Article  Google Scholar 

  12. Khokhlov, A. R. (1980) On the collapse of weakly charged polyelectrolytes. J. Phys. A: Math. Gen. 13: 979–987.

    Article  CAS  Google Scholar 

  13. Van de Steeg, H. G. M., M. A. Cohen Stuart, A. De Keizer, and B. H. Bijsterbosch (1992) Polyelectrolyte adsorption: A subtle balance of forces. Langmuir 8: 2538–2546.

    Article  Google Scholar 

  14. Cousin, F., J. Gummel, D. Ung, and F. Boué (2005) Polyelectrolyteprotein complexes: Structure and conformation of each specie revealed by SANS. Langmuir 21: 9675–9688.

    Article  CAS  Google Scholar 

  15. Velázquez-Campoy, A., H. Ohtaka, A. Nezami, S. Muzammil, and E. Freire (2001) Isothermal Titration Calorimetry. In: Current Protocols in Cell Biology. John Wiley & Sons, Inc.

    Google Scholar 

  16. Romanini, D., M. Braia, R. G. Angarten, W. Loh, and G. Picó (2007) Interaction of lysozyme with negatively charged flexible chain polymers. J. Chromatogr. B 857: 25–31.

    Article  CAS  Google Scholar 

  17. Jones, O., E. A. Decker, and D. J. McClements (2010) Thermal analysis of β-lactoglobulin complexes with pectins or carrageenan for production of stable biopolymer particles. Food Hydrocolloids 24: 239–248.

    Article  CAS  Google Scholar 

  18. Wang, Y., K. Kimura, Q. Huang, P. L. Dubin, and W. Jaeger (1999) Effects of Salt on PolyelectrolyteMicelle Coacervation. Macromol. 32: 7128–7134.

    Article  CAS  Google Scholar 

  19. Prabhu, V. M. (2005) Counterion structure and dynamics in polyelectrolyte solutions. Curr. Opin. Colloid Interface Sci. 10: 2–8.

    Article  CAS  Google Scholar 

  20. Lakowicz, J. R. (2006) Principles of fluorescence spectroscopy. Plenum Press, NY, USA.

    Book  Google Scholar 

  21. Driscoll, W. C. (1996) Robustness of the ANOVA and Tukey-Kramer statistical tests. Comput. Ind. Eng. 31: 265–268.

    Article  Google Scholar 

  22. Fuciños González, J. P., G. Bassani, B. Farruggia, G. A. Picó, L. Pastrana Castro, and M. L. Rua (2011) Conformational flexibility of lipase Lip1 from Candida Rugosa studied by electronic spectroscopies and thermodynamic approaches. Protein J. 30: 77–83.

    Article  Google Scholar 

  23. Bohidar, H. P. L. Dubin, P. R. Majhi, C. Tribet, and W. Jaeger (2005) Effects of Proteinpolyelectrolyte affinity and polyelectrolyte molecular weight on dynamic properties of bovine serum AlbuminPoly(diallyldimethylammonium chloride) Coacervates. Biomacromol. 6: 1573–1585.

    Article  CAS  Google Scholar 

  24. Gummel, J. F. Boué, B. Demé, and F. Cousin (2006) Charge stoichiometry inside polyelectrolyteprotein complexes: A direct SANS measurement for the PSSNalysozyme system. J. Phys. Chem. B 110: 24837–24846.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillermo Picó.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boeris, V., Cappella, L.V., Peres, G. et al. Chymotrypsin — Eudragit® complex formation. Biotechnol Bioproc E 18, 538–545 (2013). https://doi.org/10.1007/s12257-012-0553-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-012-0553-9

Keywords

Navigation