Skip to main content
Log in

Sucrose density gradient centrifugation separation of gold and silver nanoparticles synthesized using Magnolia kobus plant leaf extracts

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

An Erratum to this article was published on 01 March 2014

Abstract

The synthesis and post-synthesis separation of nanoparticles that are polydispersed in size and shape is important due to their variety of applications. In the present study, it is demonstrated that the Magnolia kobus plant extract produces a diverse mixture of extracellular gold and silver nanocrystals with a majority of polydispersed spheres; however, there are a significant number of homogeneously sized triangles, pentagons, and hexagons. The gold and silver nanoparticles synthesized using the M. kobus plant extract can be separated using density gradient centrifugation in the size range of 52 ∼ 117 nm and 38 ∼ 61 nm, respectively. The average particle sizes increase with increases in the sucrose concentration of each layer. Relatively larger but long, thin plates of gold nanoparticles appear in the higher density sediments, whereas a larger proportion of smaller spheres featured in the lower density gradients. Similarly, silver nanospheres of different sizes are separated at different density gradients with smaller proportions of plates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Burda, C., X. Chen, R. Narayanan, and M. A. El-Sayed (2005) Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 105: 1025–1102.

    Article  CAS  Google Scholar 

  2. Sun, Y. G. and Y. N. Xia (2002) Shape-controlled synthesis of gold and silver nanoparticles. Science 298: 2176–2179.

    Article  CAS  Google Scholar 

  3. Sau, T. K. and C. J. Murphy (2004) Room temperature, highyield synthesis of multiple shapes of gold nanoparticles in aqueous solution. J. Am. Chem. Soc. 126: 8648–8649.

    Article  CAS  Google Scholar 

  4. Wang, X. and Y. D. Li (2007) Monodisperse nanocrystals: General synthesis, assembly, and their applications. Chem. Commun. 2901–2910.

    Google Scholar 

  5. Perrault, S. D. C. (2009) Synthesis and surface modification of highly monodispersed, spherical gold nanoparticles of 50 ∼ 200 nm. J. Am. Chem. Soc. 131: 17042–17043.

    Article  CAS  Google Scholar 

  6. Arnold, M. S., S. I. Stupp, and M. C. Hersam (2005) Enrichment of single-walled carbon nanotubes by diameter in density gradients. Nano Lett. 5: 713–718.

    Article  CAS  Google Scholar 

  7. Arnaud, I., J. -P. Abid, C. Roussel, and H. H. Girault (2005) Sizeselective separation of gold nanoparticles using isoelectric focusing electrophoresis (IEF). Chem. Commun. 6: 787–788.

    Article  Google Scholar 

  8. Krueger, K. M., A. M. Al-Somali, J. C. Falkner, and V. L. Colvin (2005) Characterization of nanocrystalline CdSe by size exclusion chromatography. Anal. Chem. 77: 3511–3515.

    Article  CAS  Google Scholar 

  9. Sweeney, S. F., G. H. Woehrle, and J. E. Hutchison (2006) Rapid purification and size separation of gold nanoparticles via diafiltration. J. Am. Chem. Soc. 128: 3190–3197.

    Article  CAS  Google Scholar 

  10. Hanauer, M., S. Pierrat, I. Zins, A. Lotz, and C. Sonnichsen (2007) Separation of nanoparticles by gel electrophoresis according to size and shape. Nano Lett. 7: 2881–2887.

    Article  CAS  Google Scholar 

  11. Chen, G., Y. Wang, L. H. Tan, M. X. Yang, L. S. Tan, Y. Chen, and H. Y. Chen (2009) High-purity separation of gold nanoparticle dimers and trimers. J. Am. Chem. Soc. 131: 4218–4219.

    Article  CAS  Google Scholar 

  12. Jamison, J. A., K. M. Krueger, J. T. Mayo, C. T. Yavuz, J. J. Redden, and V. L. Colvin (2009) Applying analytical ultracentrifugation to nanocrystal suspensions. Nanotechnol. 20: 355702.

    Article  Google Scholar 

  13. Sun, X. M., S. M. Tabakman, W. S. Seo, L. Zhang, G. Y. Zhang, S. Sherlock, L. Bai, and H. J. Dai (2009) Separation of nanoparticles in a density gradient: FeCo@C and gold nanocrystals. Angew. Chem. Int. Ed. 48: 939–942.

    Article  CAS  Google Scholar 

  14. Sharma, V., K. Park, and M. Srinivasarao (2009) Shape separation of gold nanorods using centrifugation. Proc. Natl. Acad. Sci. 106: 4981–4985.

    Article  CAS  Google Scholar 

  15. Bai, L., X. J. Ma, J. F. Liu, X. M. Sun, D. Y. Zhao, and D. G. Evans (2010) Rapid separation and purification of nanoparticles in organic density gradients. J. Am. Chem. Soc. 132: 2333–2337.

    Article  CAS  Google Scholar 

  16. Ghosh, S., S. M. Bachilo, and R. B. Weisman (2010) Advanced sorting of single-walled carbon nanotubes by nonlinear densitygradient ultracentrifugation. Nat. Nanotechnol. 5: 443–450.

    Article  CAS  Google Scholar 

  17. Novak, J. P., C. Nickerson, S. Franzen, and D. L. Feldheim (2001) Purification of molecularly bridged metal nanoparticle arrays by centrifugation and size exclusion chromatography. Anal. Chem. 73: 5758–5761.

    Article  CAS  Google Scholar 

  18. Akthakul, A., A. I. Hochbaum, F. Stellacci, and A. M. Mayes (2005) Size fractionation of metal nanoparticles by membrane filtration. Adv. Mater. 17: 532–535.

    Article  CAS  Google Scholar 

  19. Ha, T. H., Y. J. Kim, and S. H. Park (2010) Complete separation of triangular gold nanoplates through selective precipitation under CTAB micelles in aqueous solution. Chem. Commun. 46: 3164–3166.

    Article  CAS  Google Scholar 

  20. Park, K., H. Koerner, and R. A. Vaia (2010) Depletion-induced shape and size selection of gold nanoparticles. Nano Lett. 10: 1433–1439.

    Article  CAS  Google Scholar 

  21. Khanal, B. P. and E. R. Zubarev (2008) Purification of high aspect ratio gold nanorods: Complete removal of platelets. J. Am. Chem. Soc. 130: 12634–12635.

    Article  CAS  Google Scholar 

  22. Ni, W., X. Kou, Z. Yang, and J. F. Wang (2008) Tailoring longitudinal surface plasmon wavelengths, scattering and absorption cross sections of gold nanorods. ACS Nano 2: 677–686.

    Article  CAS  Google Scholar 

  23. Xu, X. Y., K. K. Caswell, E. Tucker, S. Kabisatpathy, K. L. Brodhacker, and W. A. Scrivens (2007) Size and shape separation of gold nanoparticles with preparative gel electrophoresis. J. Chromatogr. A 1167: 35–41.

    Article  CAS  Google Scholar 

  24. Xiong, B., J. Cheng, Y. Qiao, R. Zhou, Y. He, and E. S. Yeung (2011) Separation of nanorods by density gradient centrifugation. J. Chromatogr. A 1218: 3823–3829.

    Article  CAS  Google Scholar 

  25. Shahverdi, A. R., A. Fakhimi, H. R. Shahverdi, and S. Minaian (2007). Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomed. Nanotechnol. Biol. Med. 3: 168–171.

    Article  CAS  Google Scholar 

  26. Vigneshwaran, N., N. M. Ashtaputre, P. V. Varadarajan, R. P. Nachane, K. M. Paralikar, and R. H. Balasubramanya (2007) Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Mater. Lett. 61: 1413–1418.

    Article  CAS  Google Scholar 

  27. Salunkhe, R. B., S. V. Patil, B. K. Salunke, C. D. Patil, and A. M. Sonawane (2011) Studies on silver accumulation and nanoparticle synthesis by Cochliobolus lunatus. Appl. Biochem. Biotechnol. 165: 221–234.

    Article  CAS  Google Scholar 

  28. Song, J. Y., H. K. Jang, and B. S. Kim (2009) Biological synthesis of gold nanopaticles using Magnolia kobus and Diopyros kaki leaf extract. Proc. Biochem. 44: 1133–1138.

    Article  CAS  Google Scholar 

  29. Song, J. Y. and B. S. Kim (2009) Rapid biological synthesis of silver nanoparticles. Bioproc. Biosyst. Eng. 32: 79–84.

    Article  Google Scholar 

  30. Patil, S. V., H. P. Borase, C. D. Patil, and B. K. Salunke (2012) Biosynthesis of silver nanoparticles using latex from few Euphorbian plants and their antimicrobial potential. Appl. Biochem. Biotechnol. 167: 776–790.

    Article  CAS  Google Scholar 

  31. Albanese, A., P. S. Tang, and W. C. Chan (2012) The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu. Rev. Biomed. Eng. 14: 1–16.

    Article  CAS  Google Scholar 

  32. Patil, C. D., S. V. Patil, H. P. Borase, B. K. Salunke, and R. B. Salunkhe (2012) Larvicidal activity of silver nanoparticles synthesized using Plumeria rubra plant latex against Aedes aegypti and Anopheles stephensi. Parasitol. Res. 110: 1815–1822.

    Article  Google Scholar 

  33. Lee, S., J. Lee, K. Kim, S. -J. Sim, M. B. Gu, J. Yi, and J. Lee (2009) Eco-toxicity of commercial silver nanopowders to bacterial and yeast strains. Biotechnol. Bioproc. Eng. 14: 490–495.

    Article  CAS  Google Scholar 

  34. Kumar, S. A., Y. A. Peter, and J. Nadeau (2009) Biosynthesis, separation and conjugation of gold nanoparticles to doxorubicin for cellular uptake and toxicity. Bioengineering Conference, 2009 IEEE 35th Annual Northeast. April 3–5. Boston, MA, USA.

    Google Scholar 

  35. Kobayashi, S., I. Kimura, and M. Kimura (1996) Inhibitory effect of magnosalin derived from Flos magnoliae on tube formation of rat vascular endothelial cells during the angiogenic process. Biol. Pharm. Bull. 19: 1304–1306.

    Article  CAS  Google Scholar 

  36. Kim, Y. G., N. Watanabe, Y. Sano, Y. Uraki, Y. Raki, and Y. Sano (1998) Extractives of kitakobushi Magnolia kobus DC. var. borealis Sarg. III.: Antibacterial and antifungal activity of extractives. Research Bulletin of the Hokkaido University Forests 55: 63–73.

    CAS  Google Scholar 

  37. Lee, Y. J., Y. M. Lee, C. K. Lee, J. K. Jung, S. B. Han, and J. T. Hong (2011) Therapeutic applications of compounds in the Magnolia family. Pharmacol. Ther. 130: 157–176.

    Article  CAS  Google Scholar 

  38. Jana, N. R., L. Gearheart, and C. J. Murphy (2001) Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J. Phys. Chem. B 105: 4065–4067.

    Article  CAS  Google Scholar 

  39. Jana, N. R. (2003) Nanorod shape separation using surfactant assisted self assembly. Chem. Commun. 1950-1951.

  40. Jana, N. R. (2004) Shape effect in nanoparticle self assembly. Angew. Chem. Int. Ed. 43: 1536–1540.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beom Soo Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, S.H., Salunke, B.K. & Kim, B.S. Sucrose density gradient centrifugation separation of gold and silver nanoparticles synthesized using Magnolia kobus plant leaf extracts. Biotechnol Bioproc E 19, 169–174 (2014). https://doi.org/10.1007/s12257-013-0561-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-013-0561-4

Keywords

Navigation