Skip to main content
Log in

Marine microbe as nano-factories for copper biomineralization

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The present research work highlighted the possibility of exploiting marine microbes for the biosynthesis of copper nanoparticles and further investigated thermodynamic changes during the biomineralization of copper in a microbial system by isothermal titration calorimetry. A bacterial strain (M-7) isolated from Kanyakumari coast, India was found capable of synthesizing these nanoparticles. Based on phylogenetic relationship, the strain M-7 was identified as Kocuria flava. The nanoparticles produced were characterized using UV-vis spectrophotometry, Transmission electron microscopy (TEM) and Dynamic light scattering (DLS). Data revealed the formation of spherical and quasi-spherical shaped nanoparticles with an average particle size ranging between 5 and 30 nm. Additionally, a study on the effect of different media components indicated that media containing higher amount of casein enzymic hydrolysate and yeast extract supported the formation of stable colloidal suspension of nanoparticles. Finally, isothermal titration calorimetry (ITC) was carried out to understand the change in heat energy during the formation of nanoparticles in different media. Combinatorial observations of all these studies may open up new strategies to develop tailor made copper nanoparticles via green route.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sau, T. K., A. L. Rogach, F. Jackel, T. A. Klar, and J. Feldmann (2010) Properties and applications of colloidal nonspherical noble metal nanoparticles. Adv. Mater. 22: 1805–1825.

    Article  CAS  Google Scholar 

  2. Syed, A., S. Saraswati, G. C. Kundu, and A. Ahmad (2013) Biological synthesis of silver nanoparticles using the fungus Humicola sp. and evaluation of their cytoxicity using normal and cancer cell lines. Spectrochim Acta A. 114: 144–147.

    Article  CAS  Google Scholar 

  3. Ai, J., E. Biazar, M. Jafarpour, M. Montazeri, A. Majdi, S. Aminifard, M. Zafari, H. R. Akbari, and H. G. Rad (2011) Nanotoxicology and nanoparticle safety in biomedical designs. Int. J. Nanomed. 6: 1117–1127.

    CAS  Google Scholar 

  4. Mukherjee, P., M. Roy, B. P. Mandal, G. K. Dey, P. K. Mukherjee, J. Ghatak, A. K. Tyagi, and S. P. Kale (2008) Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus T. asperellum. Nanotechnol. 19: 75103–75110.

    Article  CAS  Google Scholar 

  5. Narayanan, K. B. and N. Sakthivel (2010) Biological synthesis of metal nanoparticles by microbe. Adv. Coll. Interf. Sci. 156: 1–3.

    Article  CAS  Google Scholar 

  6. Borkow, G., J. Gabbay, R. Dardik, A.L. Eidelman, Y. Lavie, Y. Grunfeld, S. Ikher, M. Huszar, R. C. Zatcoff, and M. Marikovsky (2010) Molecular mechanisms of enhanced wound healing by copper oxide-impregnated dressings. Wound Rep. Regen. 18: 266–275.

    Article  Google Scholar 

  7. Hassan, S. S., S. Singh, R. Y. Parikh, M. S. Dharne, M. S. Patole, B. L. Prasad, and Y. S. Shouche (2008) Bacterial synthesis of copper/copper oxide nanoparticles. J. Nanosci. Nanotechnol. 8: 3191–3196.

    Article  Google Scholar 

  8. Singh, V. A., R. Patil, A. Anand, M. Paolo, and W. N. Gade (2010) Biological synthesis of copper oxide nano particles using Escherichia coli. Curr. Nanosci. 6: 365–369.

    Article  CAS  Google Scholar 

  9. Ramanathan, R., S. K. Bhargava, and V. Bansal (2011) Biological synthesis of copper/copper oxide nanoparticles. pp. 1–8. In: Rose Amal (ed.). CHEMECA 2011 — Engineering a better world, Engineers Australia.

    Google Scholar 

  10. Soheyla, H., H. Barabadi, E. Gharaeifathabad, and F. Naghibi (2012) Green synthesis of copper oxide nanoparticles using Penicillium aurantiogriseum, Penicillium citrinum and Penicillium waksmanii. Dig. J. Nanomater. Biostruc. 7: 999–1005.

    Google Scholar 

  11. Sharma, N., A. K. Pinnaka, M. Raje, Ashish, M. S. Bhattacharya, and A. R. Choudhury (2012) Exploitation of marine bacteria for production of gold nanoparticles. Microb. Cell Fact. 11: 86.

    Article  CAS  Google Scholar 

  12. Asmathunisha, N. and K. Kathiresan (2013) A review on biosynthesis of nanoparticles by marine organisms. Coll. Surf. B: Biointerf. 103: 283–287.

    Article  CAS  Google Scholar 

  13. Atkins, W. R. G. (1932) The copper content of sea-water. J. Mar. Biol. Assoc. U. K. 18: 193–197.

    Article  CAS  Google Scholar 

  14. Murray, R. G. E., R. N. Doetsch, and F. Robinow (1994) Determinative and cytological light microscopy. pp. 21–41. In: P. Gerhard, R. G. E. Murray, W. A. Wood, and N. R. Krieg (eds.). In Methods for General and Molecular Bacteriology. Washington, DC: American Society for Microbiology.

    Google Scholar 

  15. Cowan, S. T. and K. J. Steel (1965) Manual for the identification of Medical Bacteria. Cambridge University Press, London, UK.

    Google Scholar 

  16. Smibert, R. M. and N. R. Krieg (1994) Phenotypic characterization. pp. 607–654. In: P. Gerhardt and D. C. Washington (eds.). In Methods for General and Molecular Bacteriology. American Society for Microbiology.

    Google Scholar 

  17. Lanyi, B. (1987) Classical and rapid identification methods for medically important bacteria. Methods Microbiol. 19: 1–67.

    Article  CAS  Google Scholar 

  18. Smith, N. R., R. E. Gordon, and F. E. Clark (1952) Aerobic spore forming bacteria. U. S. Dep. Agric. Agriculture Monograph, no. 16.

    Google Scholar 

  19. Mayilraj, S., P. K. Saha, K. Suresh, and H. S. Saini (2006) Ornithinimicrobium kibberense sp. nov., isolated from the Himalayas, India. Int. J. Syst. Evol. Microbiol. 56: 1657–1661.

    Article  CAS  Google Scholar 

  20. Kim, O., Y. J. Cho, K. Lee, S. H. Yoon, M. Kim, H. Na, S. C. Park, Y. S. Jeon, J. H. Lee, H. Yi, S. Won, and J. Chun (2012) Introducing EzTaxon-e: A prokaryotic 16S rRNA Gene sequence database with phylotypes that represent uncultured species. Int. J. Syst. Evol. Microbiol. 62: 716–721.

    Article  CAS  Google Scholar 

  21. Tamura, K., D. Peterson, N. Peterson, G. Stecher, M. Nei, and S. Kumar (2011) MEGA5: Evolutionary genetics analysis using maximum likelihood, evolutionary distance and maximum parsimony methods. Mol. Biol. Evol. 28: 2731–2739.

    Article  CAS  Google Scholar 

  22. Mandel, M. and J. Marmur (1968) Use of ultraviolet absorbance temperature profile for determining the guanine plus cytosine content of DNA. Methods Enzymol. 12 B: 195–206.

    Article  Google Scholar 

  23. Malhotra, A., K. Dolma, N. Kaur, Y. S. Rathore, Ashish, S. Mayilraj, and A. R. Choudhury (2013) Biosynthesis of gold and silver nanoparticles using a novel marine strain of Stenotrophomonas. Bioresour. Technol. 142: 727–731.

    Article  CAS  Google Scholar 

  24. Abboud, Y., T. Saffaj, A. Chagrouni, A. El-Bourari, K. Brouzi, O. Tanane, and B. Ihssane (2013) Biosynthesis, characterization and antimicrobial activity of copper oxide nanoparticles (CONPs) produced using brown alga extract (Bifurcaria bifurcata). Appl. Nanosci. 4: 571–576.

    Google Scholar 

  25. Rahman, A., A. Ismail, D. Jumbianti, S. Magdalena, and H. Sudrajat (2009) Synthesis of copper oxide nanoparticles by using Phormidium cyanobacterium. Indo. J. Chem. 9: 355–360.

    Google Scholar 

  26. Dang, T. M. D., T. T. T. Le, E. Fribourg-Blanc, and M. C. Dang (2011) Synthesis and optical properties of copper nanoparticles prepared by a chemical reduction method. Adv. Nat. Sci. Nanosci. Nanotech. 2: 015009.

    Article  Google Scholar 

  27. Krimm, S. and J. Bandekar (1986) Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins. Adv. Prot. Chem. 38: 181–367.

    Article  CAS  Google Scholar 

  28. Zhang, Y. X., J. Zheng, G. Gao, Y. F. Kong, X. Zhi, K. Wang, X. Q. Zhang, and D. X. Cui (2011) Biosynthesis of gold nanoparticles using chloroplasts. Int. J. Nanomed. 6: 2899–2906.

    Article  CAS  Google Scholar 

  29. Salvadori, M. R., L. F. Lepre, R. A. Ando, C. A. O. Nascimento, and B. Correa (2013) Biosynthsis and uptake of copper nanoparticles by dead biomass of Hypocrea lixii isolated from the metal mine in the Brazilian amazon region. Plos One 8: 1–8.

    Article  Google Scholar 

  30. Castro, L., M. L. Blázquez, F. González, J. A. Muñoz, and A. Ballester (2010) Extracellular biosynthesis of gold nanoparticles using sugar beet pulp. Chem. Eng. J. 164: 92–97.

    Article  CAS  Google Scholar 

  31. Rajamanickam, K., S. S. Sudhaa, M. Francisa, T. Sowmyaa, J. Rengaramanujama, P. Sivalingam, and K. Prabakar (2013) Microalgae associated Brevundimonas sp. MSK 4 as the nano particle synthesizing unit to produce antimicrobial silver nanoparticles. Spectrochim Acta A. 113: 10–14.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anirban Roy Choudhury.

Additional information

These two authors have contributed equally to the present work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, H., Dolma, K., Kaur, N. et al. Marine microbe as nano-factories for copper biomineralization. Biotechnol Bioproc E 20, 51–57 (2015). https://doi.org/10.1007/s12257-014-0432-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-014-0432-7

Keywords

Navigation