Skip to main content
Log in

Characterization of hydroxyapatite-coated bacterial cellulose scaffold for bone tissue engineering

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The goal of this study was to develop a novel hydroxyapatite (HA) coated bacterial cellulose (BC) scaffold for bone tissue regeneration. HA-coated BC was prepared by immersing in 30 mL of 5× simulated body fluid at 37°C for 12 h. The resulting HA-coated BC scaffolds were characterized by scanning electron microscopy (SEM), attenuated total reflectance-Fourier transform infrared (ATRFTIR) spectroscopy, and thermal gravimetric analysis (TGA). HA spherical globules were newly formed on the surface of the BC, and a fibrous network of BC scaffolds still maintained their dimensions for cell adhesion and proliferation. ATR-FTIR spectroscopy analysis showed bands assigned to specific signals for phosphate and carbonate ions from HA. HA-coated BC scaffolds of thermal gravimetric analysis presented residue of around 25%. The ability for bone regeneration of HA-coated BC scaffolds was evaluated using a rat calvarial defect model for 4 and 8 weeks. After implantation, both BC and HAcoated BC scaffolds showed new bone formation derived from existing bone, and found new bone even inside the scaffold. Furthermore, a new bone area was signigicantly increased in the HA-coated BC scaffolds compared with those from BC scaffolds, and bone-like materials were frequently found in HA-coated BC scaffolds. Therefore, the HA-coated BC scaffolds can be used as an effective tool for bone tissue regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Langer, R. and D. A. Tirrell (2004) Designing materials for biology and medicine. Nature 428: 487–492.

    Article  CAS  Google Scholar 

  2. Lim, J. Y., S. H. Kim, and Y. H. Kim (2002) Polymeric materials for hard tissue fixation. Polym. Sci. Technol. 13: 15–22.

    CAS  Google Scholar 

  3. Profio, A. E. (1993) Biomedical Engineering. John Wiley & Sons Inc, NY, USA.

    Google Scholar 

  4. Kawai, N., S. Niwa, M. Sato, Y. Sato, Y. Suwa, and I. Ichihara (1997) Bone formation by cells from femurs cultured among three-dimensionally arranged hydroxyapatite granules. J. Biomed. Mater. Res. 37: 1–8.

    Article  CAS  Google Scholar 

  5. Kong, X. D., F. Z. Cui, X. M. Wang, M. Zhang, and W. Zhang (2004) Silk fibroin regulated mineralization of hydroxyapatite nanocrystals. J. Cryst. Growth. 270: 197–202.

    Article  CAS  Google Scholar 

  6. Hutmacher, D. W. (2000) Scaffolds in tissue engineering bone and cartilage. Biomater. 21: 2529–2543.

    Article  CAS  Google Scholar 

  7. Millon, L. E. and W. K. Wan (2006) The polyvinyl alcohol-bacterial cellulose system as a new nanocomposite for biomedical applications. J. Biomed. Mater. Res. B: Appl. Biomater. 79: 245–253.

    Article  CAS  Google Scholar 

  8. Kokubo, T. (1991) Bioactive glass ceramics: Properties and applications. Biomater. 12: 155–163.

    Article  CAS  Google Scholar 

  9. Hench, L. L. (1991) Bioceramics: From concept to clinic. J. Am. Ceram. Soc. 74: 1487–1510.

    Article  CAS  Google Scholar 

  10. Helebrant, A., L. Jonasova, and L. Sanda (2002) The influence of simulated body fluid composition on carbonated hydroxyapatite formation. Ceramics. 46: 9–14.

    CAS  Google Scholar 

  11. Kim, I.-Y., S.-J. Seo, H.-S. Moon, M.-K. Yoo, I.-Y. Park, B.-C. Kim, and C.-S. Cho (2008) Chitosan and its derivatives for tissue engineering applications. Biotechnol. Adv. 26: 1–21.

    Article  CAS  Google Scholar 

  12. Charlesby, A. (1955) The degradation of cellulose by ionizing radiation. J. Polym. Sci. 15: 263–270.

    Article  CAS  Google Scholar 

  13. Kudoh, H., N. Kasai, T. Sasuga, and T. Seguchi (1996) Low temperature gamma-ray irradiation effects on polymer materials-2. Irradiation at liquid helium temperature. Radiat. Phy. Chem. 48: 89–93.

    Article  CAS  Google Scholar 

  14. Choi, J., S. I. Jeong, and Y. M. Lim (2012) Preparation and characterization of Gelatin-immobilized bacterial cellulose scaffold for tissue engineering using Gamma-ray irradiation. J. Radiat. Ind. 6: 159–164.

    Google Scholar 

  15. Jayasuriya, A. C., C. Shah, N. A. Ebraheim, and A. H. Jayatissa (2008) Acceleration of biomimetic mineralization to apply in bone regeneration. Biomed. Mater. 3: 015003.

    Article  Google Scholar 

  16. Backdahl, H., G. Helenius, A. Bodin, U. Nannmark, B. R. Johansson, B. Risberg, and P. Gatenholm (2006) Mechanical properties of bacterial cellulose and interactions with smooth muscle cells. Biomat. 27: 2141–2149.

    Article  Google Scholar 

  17. Retegi, A., N. Gabilondo, C. Pena, R. Zuluaga, C. Castro, P. Ganan, K. de laCaba, and I. Mondragon (2010) Bacterial cellulose films with controlled microstructure mechanical property relationships. Cellulose 17: 661–669.

    Article  CAS  Google Scholar 

  18. Sokolnicki, A. M., R. J. Fisher, T. P. Harrah, and D. L. Kaplan (2006) Permeability of bacterial cellulose membranes. J. Membr. Sci. 272: 15–27.

    Article  CAS  Google Scholar 

  19. Nge, T. T. and J. Sugiyama (2007) Surface functional group dependent apatite formation on bacterial cellulose microfibrils network in a simulated body fluid. J. Biomed. Mater. Res. Part A. 81: 124–134.

    Article  Google Scholar 

  20. Wan, Y. Z., Y. Huang, C. D. Yuan, S. Raman, Y. Zhu, H. J. Jiang, F. He, and C. Gao (2007) Biomimetic synthesis of hydroxyapatite/ bacterial cellulose nanocomposites for biomedical applications. Mater. Sci. Eng. C 27: 855–864.

    Article  CAS  Google Scholar 

  21. Esa, F., S. M. Tasirin, and N. A. Rahman (2014) Overview of bacterial cellulose production and application. Agric. Agric. Sci. Proc 2: 113–119.

    Google Scholar 

  22. Martins, I. M. G., S. P. Magina, L. Oliveira, C. S. R. Freire, A. J. D. Silvestre, C. P. Neto, and A. Gandini (2009) New biocomposites based on thermoplastic starch and bacterial cellulose. Comp. Sci. Technol. 69: 2163–2168.

    Article  CAS  Google Scholar 

  23. Figueiredo, M. M., J. A. F. Gamelas, and A. G. Martins (2012) Infrared Spectroscopy-Life and Biomedical Sciences. Chap. 11. InTech, 51000 Rijeka, Croatia.

    Google Scholar 

  24. Figueiredo, A. G. P. R., A. Alonso-Varona, S. Fernandes, T. Palomares, E. Rubio-Azpeitia, A. Barros-Timmons, A. J. D. Silvestre, C. Pascoal Neto, and C. S. R. Freire (2013) Biocompatible bacterial Cellulose-poly (2-hydroxyethyl methacrylate) nanocomposite films. Biomed. Res. Int. 2013: ID 698141.

    Google Scholar 

  25. Saska, S., H. S. Barud, A. M. M. Gaspar, R. Marchetto, S. J. L. Ribeiro, and Y. Messaddeq (2011) Bacterial Cellulose-hydroxyapatite nanocomposites for bone regeneration. Int. J. Biomater. 8: 175362.

    Google Scholar 

  26. Wanrosli, W. D., R. Rohaizu, and A. Ghazali (2011) Synthesis and characterization of cellulose phosphate from oil palm empty fruit bunches microcrystalline cellulose. Carbohydr. Polym. 84: 262–267.

    Article  CAS  Google Scholar 

  27. Zhang, S., G. Xiong, F. He, Y. Huang, Y. Wang, and Y. Wan (2009) Characterisation of hydroxyapatite/bacterial cellulose nanocomposite. Polym. Polym. Compos. 17: 353–358.

    CAS  Google Scholar 

  28. Ryu, J., S. H. Ku, H. Lee, and C. B. Park (2010) Mussel-inspired polydopamine coating as a universal route to hydroxyapatite crystallization. Adv. Func. Mater. 20: 2132–2139.

    Article  CAS  Google Scholar 

  29. Gindl, W. and J. Keckes (2004) Tensile properties of cellulose acetate butyrate composites reinforced with bacterial cellulose. Compos. Sci. Technol. 64: 2407–2413.

    Article  CAS  Google Scholar 

  30. Crivello, J. V. (1999) UV and electron beam-induced cationic polymerization. Nucl. Instr. Meth. Phys. Res. B 151: 8–21.

    Article  CAS  Google Scholar 

  31. Hausberger, A. G., R. A. Kenley, and P. P. DeLuca (1995) Gamma irradiation effects on molecular weight and in vitro degradation of poly(D,L-Lactide-co-Glycolide) microparticles. Pharm. Res. 12: 851–856.

    Article  CAS  Google Scholar 

  32. Driscoll, M., A. Stipanovic, W. Winter, K. Cheng, M. Manning, J. Spiese, R. A. Galloway, and M. R. Cleland (2009) Electron beam irradiation of cellulose. Radiat. Phy. Chem. 78: 539–542.

    Article  CAS  Google Scholar 

  33. Scaglione, S., C. Ilengo, M. Fato, and R. Quarto (2009) Hydroxyapatite-coated polycaprolacton wide mesh as a model of open structure for bone regeneration. Tissue Eng. Part A 15: 155–163.

    Article  CAS  Google Scholar 

  34. Kilpadi, K. L., P.-L. Chang, and S. L. Bellis (2001) Hydroxylapatite binds more serum proteins, purified integrins, and osteoblast precursor cells than titanium or steel. J. Biomed. Mater. Res. 57: 258–267.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jung-Bo Huh or Youn-Mook Lim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahn, SJ., Shin, Y.M., Kim, S.E. et al. Characterization of hydroxyapatite-coated bacterial cellulose scaffold for bone tissue engineering. Biotechnol Bioproc E 20, 948–955 (2015). https://doi.org/10.1007/s12257-015-0176-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-015-0176-z

Keywords

Navigation