Skip to main content
Log in

Development of a Computational Fluid Dynamics Model for Scaling-up Ambr Bioreactors

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

It is known that process scaling-up has always been a challenge in biopharmaceutical and food industry. In recent years, newly emerging microscale bioreactors like Ambr15 and Ambr250 have attracted significant attention for that they can provide high throughput and accelerate upstream process development. In this work, we developed the first multiphase Computational Fluid Dynamics (CFD) model for an in-depth characterization of Ambr bioreactor systems. A number of advanced computational methods, including Reynolds stress turbulence model, population balance model, multiple reference frame (MRF), sliding mesh (SM) and user defined functions (UDFs), were integrated for the first time to systematically study the gas-liquid mixing in Ambr250 bioreactor. We provided detailed comparison between MRF and SM method, demonstrated the limitation of MRF for predicting bubble distribution in asymmetric reactors. Characteristics of hydrodynamics, mass transfer, turbulent dissipation and bubble size distribution were predicted from our CFD models and validated by existing experimental data for a variety of operating conditions for both the Ambr15 and Ambr250 bioreactors. The predicted kLa value ranges are 0.18–7.90 h-1 and 2.15–11.52 h-1 for Ambr250 and Ambr15, respectively. This work thus provides a superior framework for the computational modeling of microscale stirred bioreactors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Muller, M. M. (2016) Scale–up and scale–down topics facing the industry. Proceedings of the Engineering Conferences International. May.

    Google Scholar 

  2. Xu, P., C. Clark, T. Ryder, C. Sparks, J. Zhou, M. Wang, R. Russell, and C. Scott (2017) Characterization of TAP Ambr 250 disposable bioreactors, as a reliable scale–down model for biologics process development. Biotechnol. Prog. 33: 478–489.

    Article  CAS  PubMed  Google Scholar 

  3. Rafiq, Q. A., A. W. Nienow, and C. J. Hewitt (2017) Process development of human mesenchymal stem cell microcarrier culture using an automated high–throughput microbioreactor.

  4. Yoshida, T., S. Y. Lee, J. Nielsen, and G. Stephanopoulos (2017) Applied Bioengineering: Innovations and Future Directions. John Wiley & Sons.

  5. Pandey, A., C. Larroche, and C. R. Soccol (2017) Current Developments in Biotechnology and Bioengineering: Current Advances in Solid–State Fermentation. Elsevier.

    Google Scholar 

  6. Sherman, M., V. Lam, M. Carpio, N. Hutchinson, and C. Fenge (2016) Continuous cell culture operation at 2,000–L scale. BioProcess Int. 14.

    Google Scholar 

  7. Hsu, W. T., R. P. Aulakh, D. L. Traul, and I. H. Yuk (2012) Advanced microscale bioreactor system: a representative scaledown model for bench–top bioreactors. Cytotechnology 64: 667–678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ngibuini, M. (2012) Reducing biomanufacturing bottlenecks: Scale–down reactor automates parameter control and facilitates development. Gen. Eng. Biotechnol. News 33.

    Google Scholar 

  9. Rameez, S., S. S. Mostafa, C. Miller, and A. A. Shukla (2014) High–throughput miniaturized bioreactors for cell culture process development: reproducibility, scalability, and control. Biotechnol. Prog. 30: 718–727.

    Article  CAS  PubMed  Google Scholar 

  10. Kim, B. J., J. Diao, and M. L. Shuler (2012) Mini–scale bioprocessing systems for highly parallel animal cell cultures. Biotechnol. Progress 28: 595–607.

    Article  CAS  Google Scholar 

  11. Xia, B. and D.–W. Sun (2002) Applications of computational fluid dynamics (CFD) in the food industry: a review. Comput. Electron. Agric. 34: 5–24.

    Article  Google Scholar 

  12. Kremer, D. M. and B. C. Hancock (2006) Process simulation in the pharmaceutical industry: a review of some basic physical models. J. Pharm. Sci. 95: 517–529.

    Article  CAS  PubMed  Google Scholar 

  13. Sarkar, J., L. K. Shekhawat, V. Loomba, and A. S. Rathore (2016) CFD of mixing of multi–phase flow in a bioreactor using population balance model. Biotechnol. Progress 32: 613–628.

    Article  CAS  Google Scholar 

  14. Zhang, H., W. Williams–Dalson, E. Keshavarz–Moore, and P. A. Shamlou (2005) Computational–fluid–dynamics (CFD) analysis of mixing and gas–liquid mass transfer in shake flasks. Biotechnol. Appl. Biochem. 41: 1–8.

    Article  PubMed  Google Scholar 

  15. Utomo, T., Z. Jin, M. Rahman, H. Jeong, and H. Chung (2008) Investigation on hydrodynamics and mass transfer characteristics of a gas–liquid ejector using three–dimensional CFD modeling. J. Mech. Sci. Technol. 22: 1821–1829.

    Article  Google Scholar 

  16. Gimbun, J., C. D. Rielly, and Z. K. Nagy (2009) Modelling of mass transfer in gas–liquid stirred tanks agitated by Rushton turbine and CD–6 impeller: a scale–up study. Chem. Eng. Res. Design 87: 437–451.

    Article  CAS  Google Scholar 

  17. Gelves, R., A. Dietrich, and R. Takors (2014) Modeling of gasliquid mass transfer in a stirred tank bioreactor agitated by a Rushton turbine or a new pitched blade impeller. Bioprocess Biosyst. Eng. 37: 365–375.

    Article  CAS  PubMed  Google Scholar 

  18. Higbie, R. (1935) The rate of absorption of a pure gas into still liquid during short periods of exposure. Trans. AIChE 31: 365–389.

    CAS  Google Scholar 

  19. Kapic, A. and T. J. Heindel (2006) Correlating gas–liquid mass transfer in a stirred–tank reactor. Chem. Eng. Res. Design 84: 239–245.

    Article  CAS  Google Scholar 

  20. Dhanasekharan, K. M., J. Sanyal, A. Jain, and A. Haidari (2005) A generalized approach to model oxygen transfer in bioreactors using population balances and computational fluid dynamics. Chem. Eng. Sci. 60: 213–218.

    Article  CAS  Google Scholar 

  21. Khopkar, A. R., G. R. Kasat, A. B. Pandit, and V. V. Ranade (2006) CFD simulation of mixing in tall gas–liquid stirred vessel: Role of local flow patterns. Chem. Eng. Sci. 61: 2921–2929.

    Article  CAS  Google Scholar 

  22. Xia, J.–Y., Y.–H. Wang, S.–L. Zhang, N. Chen, P. Yin, Y.–P. Zhuang, and J. Chu (2009) Fluid dynamics investigation of variant impeller combinations by simulation and fermentation experiment. Biochem. Eng. J. 43: 252–260.

    Article  CAS  Google Scholar 

  23. Scargiali, F., A. D’Orazio, F. Grisafi, and A. Brucato (2007) Modelling and simulation of gas–liquid hydrodynamics in mechanically stirred tanks. Chem. Eng. Res. Design 85: 637–646.

    Article  CAS  Google Scholar 

  24. Cheung, S. C. P., G. H. Yeoh, and J. Y. Tu (2007) On the numerical study of isothermal vertical bubbly flow using two population balance approaches. Chem. Eng. Sci. 62: 4659–4674.

    Article  CAS  Google Scholar 

  25. Ahmed, S. U., P. Ranganathan, A. Pandey, and S. Sivaraman (2010) Computational fluid dynamics modeling of gas dispersion in multi impeller bioreactor. J. Biosci. Bioeng. 109: 588–597.

    Article  CAS  PubMed  Google Scholar 

  26. Sajjadi, B., A. A. A. Raman, S. Ibrahim, and R. S. S. R. E. Shah (2012) Review on gas–liquid mixing analysis in multiscale stirred vessel using CFD. Rev. Chem. Eng. 28: 171–189.

    Article  CAS  Google Scholar 

  27. Nienow, A. W., C. D. Rielly, K. Brosnan, N. Bargh, K. Lee, K. Coopman, and C. J. Hewitt (2013) The physical characterisation of a microscale parallel bioreactor platform with an industrial CHO cell line expressing an IgG4. Biochem. Eng. J. 76: 25–36.

    Article  CAS  Google Scholar 

  28. Rutherford, K., K. C. Lee, S. M. S. Mahmoudi, and M. Yianneskis (1996) Hydrodynamic characteristics of dual Rushton impeller stirred vessels. AIChE J. 42: 332–346.

    Article  CAS  Google Scholar 

  29. Bareither, R., N. Bargh, R. Oakeshott, K. Watts, and D. Pollard (2013) Automated disposable small scale reactor for high throughput bioprocess development: A proof of concept study. Biotechnol. Bioeng. 110: 3126–3138.

    Article  CAS  PubMed  Google Scholar 

  30. De Wilde, D., T. Dreher, C. Zahnow, U. Husemann, G. Greller, T. Adams, and C. Fenge (2014) Superior scalability of single–use bioreactors. BioProcess Int. 12: 14–19.

    Google Scholar 

  31. Azargoshasb, H., S. M. Mousavi, O. Jamialahmadi, S. A. Shojaosadati, and S. B. Mousavi (2016) Experiments and a threephase computational fluid dynamics (CFD) simulation coupled with population balance equations of a stirred tank bioreactor for high cell density cultivation. Can. J. Chem. Eng. 94: 20–32.

    Article  CAS  Google Scholar 

  32. Elqotbi, M., S. D. Vlaev, L. Montastruc, and I. Nikov (2013) CFD modelling of two–phase stirred bioreaction systems by segregated solution of the Euler–Euler model. Comput. Chem. Eng. 48: 113–120.

    Article  CAS  Google Scholar 

  33. Kerdouss, F., A. Bannari, and P. Proulx (2006) CFD modeling of gas dispersion and bubble size in a double turbine stirred tank. Chem. Eng. Sci. 61: 3313–3322.

    Article  CAS  Google Scholar 

  34. Jaworski, Z., K. N. Dyster, V. P. Mishra, A. W. Nienow, and M. L. Wyszynski (1998) A study of an up–and a down–pumping wide–blade hydrofoil impeller: Part II. CFD analysis. Can. J. Chem. Eng. 76: 866–876.

    Article  CAS  Google Scholar 

  35. ANSYS, I., ANSYS Fluent Theory Guide Release 17.0.

  36. Schiller, V. L. (1933) A drag coefficient correlation. Z. Vereines Ingenieure 77: 318–320.

    Google Scholar 

  37. Murthy, B. N. and J. B. Joshi (2008) Assessment of standard k–e, RSM and LES turbulence models in a baffled stirred vessel agitated by various impeller designs. Chem. Eng. Sci. 63: 5468–5495.

    Article  CAS  Google Scholar 

  38. Delafosse, A., A. Line, J. Morchain, and P. Guiraud (2008) LES and URANS simulations of hydrodynamics in mixing tank: comparison to PIV experiments. Chem. Eng. Res. Design 86: 1322–1330.

    Article  CAS  Google Scholar 

  39. Paul, E. L., V. A. Atiemo–Obeng, and S. M. Kresta (2004) Handbook of Industrial Mixing: Science and Practice. John Wiley & Sons.

    Google Scholar 

  40. ANSYS, I., ANSYS Fluent Population Balance Module Manual Release 17.0.

  41. Luo, H. and H. F. Svendsen (1996) Theoretical model for drop and bubble breakup in turbulent dispersions. AIChE J. 42: 1225–1233.

    Article  CAS  Google Scholar 

  42. Ranganathan, P. and S. Sivaraman (2011) Investigations on hydrodynamics and mass transfer in gas–liquid stirred reactor using computational fluid dynamics. Chem. Eng. Sci. 66: 3108–3124.

    Article  CAS  Google Scholar 

  43. Miyahara, T., Y. Matsuba, and T. Takahashi (1983) The size of bubbles generated from perforated plates. Int. Chem. Eng. 23: 517–523.

    Google Scholar 

  44. Kane, J. (2012) Measuring kLa for better bioreactor performance. BioProcess Int. 10.

    Google Scholar 

  45. Kelly, W. J. (2008) Using computational fluid dynamics to characterize and improve bioreactor performance. Biotechnol. Appl. Biochem. 49: 225–238.

    Article  CAS  PubMed  Google Scholar 

  46. Van’t Riet, K. (1979) Review of measuring methods and results in nonviscous gas–liquid mass transfer in stirred vessels. Ind. Eng. Chem. Process Des. Dev. 18: 357–364.

    Article  Google Scholar 

  47. Nienow, A. W. and M. D. Lilly (1979) Power drawn by multiple impellers in sparged agitated vessels. Biotechnol. Bioeng. 21: 2341–2345.

    Article  Google Scholar 

  48. Nienow, A. W. (1998) Hydrodynamics of stirred bioreactors. Appl. Mech. Rev. 51: 3–32.

    Article  Google Scholar 

  49. Hall, S. (2017) Rules of Thumb for Chemical Engineers. 6th ed. Butterworth–Heinemann.

    Google Scholar 

  50. Khopkar, A. R. and P. A. Tanguy (2008) CFD simulation of gas–liquid flows in stirred vessel equipped with dual rushton turbines: influence of parallel, merging and diverging flow configurations. Chem. Eng. Sci. 63: 3810–3820.

    Article  CAS  Google Scholar 

  51. Zhou, G. and S. M. Kresta (1996) Impact of tank geometry on the maximum turbulence energy dissipation rate for impellers. AIChE J. 42: 2476–2490.

    Article  CAS  Google Scholar 

  52. Hortsch, R. and D. Weuster–Botz (2010) Power consumption and maximum energy dissipation in a milliliter–scale bioreactor. Biotechnol. Prog. 26: 595–599.

    CAS  PubMed  Google Scholar 

  53. Wernersson, E. S. and C. Trägårdh (1999) Scale–up of Rushton turbine–agitated tanks. Chem. Eng. Sci. 54: 4245–4256.

    Article  CAS  Google Scholar 

  54. Wang, T., J. Wang, and Y. Jin (2006) A CFD–PBM coupled model for gas–liquid flows. AIChE J. 52: 125–140.

    Article  CAS  Google Scholar 

  55. Calderbank, P. H. (1958) Physical rate processes in industrial fermentation, Part I: The interfacial area in gas–liquid contacting with mechanical agitation. Trans. Instn. Chem. Engrs. 36: 443–463.

    Google Scholar 

  56. Paceka, A. W., C. C. Mana, and A. W. Nienow (1998) On the Sauter mean diameter and size distributions in turbulent liquid/ liquid dispersions in a stirred vessel. Chem. Eng. Sci. 53: 2005–2011.

    Article  Google Scholar 

  57. Olmos, E., C. Gentric, C. Vial, G. Wild, and N. Midoux (2001) Numerical simulation of multiphase flow in bubble column reactors. Influence of bubble coalescence and break–up. Chem. Eng. Sci. 56: 6359–6365.

    CAS  Google Scholar 

  58. Camarasa, E., C. Vial, S. Poncin, G. Wild, N. Midoux, and J. Bouillard (1999) Influence of coalescence behaviour of the liquid and of gas sparging on hydrodynamics and bubble characteristics in a bubble column. Chem. Eng. Processing: Process Intensification 38: 329–344.

    Article  CAS  Google Scholar 

  59. Laakkonen, M., P. Moilanen, V. Alopaeus, and J. Aittamaa (2007) Modelling local gas–liquid mass transfer in agitated vessels. Chem. Eng. Res. Design 85: 665–675.

    Article  CAS  Google Scholar 

  60. Chapple, D., S. M. Kresta, A. Wall, and A. Afacan (2002) The effect of impeller and tank geometry on power number for a pitched blade turbine. Chem. Eng. Res. Design 80: 364–372.

    Article  CAS  Google Scholar 

  61. Rutherford, K., S. M. Mahmoudi, K. C. Lee, and M. Yianneskis (1996) The influence of Rushton impeller blade and disk thickness on the mixing characteristics of stirred vessels. Chem. Eng. Res. Design 74: 369–378.

    CAS  Google Scholar 

  62. Rushton, J. H. (1950) Power characteristics of mixing impellers Part 1. Chem. Eng. Prog. 46: 395–404.

    CAS  Google Scholar 

  63. Bates, R. L., P. L. Fondy, and R. R. Corpstein (1963) Examination of some geometric parameters of impeller power. Ind. Eng. Chem. Process Design Dev. 2: 310–314.

    Article  CAS  Google Scholar 

  64. Gill, N., M. Appleton, F. Baganz, and G. Lye (2008) Quantification of power consumption and oxygen transfer characteristics of a stirred miniature bioreactor for predictive fermentation scale–up. Biotechnol. Bioeng. 100: 1144–1155.

    Article  CAS  PubMed  Google Scholar 

  65. Betts, J. I., and F. Baganz (2006) Miniature bioreactors: current practices and future opportunities. Microb. Cell Fact. 5: 21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Garcia–Ochoa, F. and E. Gomez (2009) Bioreactor scale–up and oxygen transfer rate in microbial processes: an overview. Biotechnol. Adv. 27: 153–176.

    Article  CAS  PubMed  Google Scholar 

  67. Kaiser, S. C., C. Löffelholz, S. r. Werner, and D. Eibl (2011) CFD for characterizing standard and single–use stirred cell culture bioreactors. pp. 97–122 In: P. I. Minin (ed.). Computational Fluid Dynamics Technologies and Applications. InTech, City.

    Google Scholar 

  68. Nienow, A. W. (2006) Reactor engineering in large scale animal cell culture. Cytotechnology 50: 9–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. MixIT, MRF versus Sliding Mesh. http://mixit.tridiagonal.com/multiple–reference–frame–mrf–versus–sliding–mesh.

  70. Montante, G., K. C. Lee, A. Brucato, and M. Yianneskis (2001) Numerical simulations of the dependency of flow pattern on impeller clearance in stirred vessels. Chem. Eng. Sci. 56: 3751–3770.

    Article  CAS  Google Scholar 

  71. Jakirlic, S. and R. Maduta (2015) Extending the bounds of ‘steady’ RANS closures: Toward an instability–sensitive Reynolds stress model. Int. J. Heat Fluid Flow 51: 175–194.

    Article  Google Scholar 

  72. Vikhansky, A. and A. Splawski (2015) Adaptive multiply size group method for CFD–population balance modelling of polydisperse flows. Can. J. Chem. Eng. 93: 1327–1334.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to William J. Kelly or Zuyi Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Scott, K., Kelly, W.J. et al. Development of a Computational Fluid Dynamics Model for Scaling-up Ambr Bioreactors. Biotechnol Bioproc E 23, 710–725 (2018). https://doi.org/10.1007/s12257-018-0063-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-018-0063-5

Keywords

Navigation