Skip to main content

Advertisement

Log in

miRNAs as Therapeutic Targets in Ischemic Heart Disease

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Ischemic heart disease is a form of congestive heart failure that is caused by insufficient blood supply to the heart, resulting in a loss of viable tissue. In response to the injury, the non-ischemic myocardium displays signs of secondary remodeling, like interstitial fibrosis and hypertrophy of cardiac myocytes. This remodeling process further deteriorates pump function and increases susceptibility to arrhythmias. MicroRNAs (miRNAs) are small, non-coding RNAs that regulate gene expression in a sequence-dependent manner. Recently, several groups identified miRNAs as crucial gene regulators in response to myocardial infarction (MI) and during post-MI remodeling. In this review, we discuss how modulation of these miRNAs represents a promising new therapeutic strategy to improve the clinical outcome in ischemic heart disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Cannon, R. O., 3rd. (2005). Mechanisms, management and future directions for reperfusion injury after acute myocardial infarction. Nature Clinical Practice. Cardiovascular Medicine, 2(2), 88–94.

    Article  PubMed  CAS  Google Scholar 

  2. Bolli, R., Becker, L., Gross, G., Mentzer, R., Jr., Balshaw, D., & Lathrop, D. A. (2004). Myocardial protection at a crossroads: The need for translation into clinical therapy. Circulation Research, 95(2), 125–134.

    Article  PubMed  CAS  Google Scholar 

  3. Bartel, D. P. (2004). MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell, 116(2), 281–297.

    Article  PubMed  CAS  Google Scholar 

  4. Hutvagner, G., Simard, M. J., Mello, C. C., & Zamore, P. D. (2004). Sequence-specific inhibition of small RNA function. PLoS Biology, 2(4), E98.

    Article  PubMed  Google Scholar 

  5. Berezikov, E., Thuemmler, F., van Laake, L. W., et al. (2006). Diversity of microRNAs in human and chimpanzee brain. Nature Genetics, 38(12), 1375–1377.

    Article  PubMed  CAS  Google Scholar 

  6. Friedman, R. C., Farh, K. K., Burge, C. B., & Bartel, D. P. (2009). Most mammalian mRNAs are conserved targets of microRNAs. Genome Research, 19(1), 92–105.

    Article  PubMed  CAS  Google Scholar 

  7. Shan, Z. X., Lin, Q. X., Fu, Y. H., et al. (2009). Upregulated expression of miR-1/miR-206 in a rat model of myocardial infarction. Biochemical and Biophysical Research Communications, 381(4), 597–601.

    Article  PubMed  CAS  Google Scholar 

  8. Tang, Y., Zheng, J., Sun, Y., Wu, Z., Liu, Z., & Huang, G. (2009). MicroRNA-1 regulates cardiomyocyte apoptosis by targeting Bcl-2. International Heart Journal, 50(3), 377–387.

    Article  PubMed  CAS  Google Scholar 

  9. Ikeda, S., Kong, S. W., Lu, J., et al. (2007). Altered microRNA expression in human heart disease. Physiological Genomics, 31(3), 367–373.

    Article  PubMed  CAS  Google Scholar 

  10. van Rooij, E., Sutherland, L. B., Liu, N., et al. (2006). A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proceedings of the National Academy of Sciences of the United States of America, 103(48), 18255–18260.

    Article  PubMed  CAS  Google Scholar 

  11. Cimmino, A., Calin, G. A., Fabbri, M., et al. (2005). miR-15 and miR-16 induce apoptosis by targeting BCL2. Proceedings of the National Academy of Sciences of the United States of America, 102(39), 13944–13949.

    Article  PubMed  CAS  Google Scholar 

  12. Wang, Y., & Lee, C. G. (2009). MicroRNA and cancer—Focus on apoptosis. Journal of Cellular and Molecular Medicine, 13(1), 12–23.

    Article  PubMed  CAS  Google Scholar 

  13. Dong, S., Cheng, Y., Yang, J., et al. (2009). MicroRNA expression signature and the role of microRNA-21 in the early phase of acute myocardial infarction. Journal of Biological Chemistry, 284(43), 29514–29525.

    Article  PubMed  CAS  Google Scholar 

  14. Cheng, Y., Liu, X., Zhang, S., Lin, Y., Yang, J., & Zhang, C. (2009). MicroRNA-21 protects against the H(2)O(2)-induced injury on cardiac myocytes via its target gene PDCD4. Journal of Molecular and Cellular Cardiology, 47(1), 5–14.

    Article  PubMed  CAS  Google Scholar 

  15. Thum, T., Gross, C., Fiedler, J., et al. (2008). MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature, 456(7224), 980–984.

    Article  PubMed  CAS  Google Scholar 

  16. Loor, G., & Schumacker, P. T. (2008). Role of hypoxia-inducible factor in cell survival during myocardial ischemia–reperfusion. Cell Death and Differentiation, 15(4), 686–690.

    Article  PubMed  CAS  Google Scholar 

  17. Rane, S., He, M., Sayed, D., et al. (2009). Downregulation of miR-199a derepresses hypoxia-inducible factor-1alpha and Sirtuin 1 and recapitulates hypoxia preconditioning in cardiac myocytes. Circulation Research, 104(7), 879–886.

    Article  PubMed  CAS  Google Scholar 

  18. van Rooij, E., Sutherland, L. B., Thatcher, J. E., et al. (2008). Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proceedings of the National Academy of Sciences of the United States of America, 105(35), 13027–13032.

    Article  PubMed  Google Scholar 

  19. Chi, N. C., & Karliner, J. S. (2004). Molecular determinants of responses to myocardial ischemia/reperfusion injury: Focus on hypoxia-inducible and heat shock factors. Cardiovascular Research, 61(3), 437–447.

    Article  PubMed  CAS  Google Scholar 

  20. Ren, X. P., Wu, J., Wang, X., et al. (2009). MicroRNA-320 is involved in the regulation of cardiac ischemia/reperfusion injury by targeting heat-shock protein 20. Circulation, 119(17), 2357–2366.

    Article  PubMed  CAS  Google Scholar 

  21. Yin, C., Salloum, F. N., & Kukreja, R. C. (2009). A novel role of microRNA in late preconditioning: Upregulation of endothelial nitric oxide synthase and heat shock protein 70. Circulation Research, 104(5), 572–575.

    Article  PubMed  CAS  Google Scholar 

  22. Spinale, F. G. (2007). Myocardial matrix remodeling and the matrix metalloproteinases: Influence on cardiac form and function. Physiological Reviews, 87(4), 1285–1342.

    Article  PubMed  CAS  Google Scholar 

  23. Roy, S., Khanna, S., Hussain, S. R., et al. (2009). MicroRNA expression in response to murine myocardial infarction: miR-21 regulates fibroblast metalloprotease-2 via phosphatase and tensin homologue. Cardiovascular Research, 82(1), 21–29.

    Article  PubMed  CAS  Google Scholar 

  24. Liu, N., Bezprozvannaya, S., Williams, A. H., et al. (2008). microRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart. Genes and Development, 22(23), 3242–3254.

    Article  PubMed  CAS  Google Scholar 

  25. Duisters, R. F., Tijsen, A. J., Schroen, B., et al. (2009). miR-133 and miR-30 regulate connective tissue growth factor: Implications for a role of microRNAs in myocardial matrix remodeling. Circulation Research, 104(2), 170–178. 176 pp following 178.

    Article  PubMed  CAS  Google Scholar 

  26. Care, A., Catalucci, D., Felicetti, F., et al. (2007). MicroRNA-133 controls cardiac hypertrophy. Nature Medicine, 13(5), 613–618.

    Article  PubMed  CAS  Google Scholar 

  27. Yang, W. J., Yang, D. D., Na, S., Sandusky, G. E., Zhang, Q., & Zhao, G. (2005). Dicer is required for embryonic angiogenesis during mouse development. Journal of Biological Chemistry, 280(10), 9330–9335.

    Article  PubMed  CAS  Google Scholar 

  28. Bonauer, A., Carmona, G., Iwasaki, M., et al. (2009). MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science, 324(5935), 1710–1713.

    Article  PubMed  CAS  Google Scholar 

  29. Bonauer, A., & Dimmeler, S. (2009). The microRNA-17 approximately 92 cluster: Still a miRacle? Cell Cycle, 8(23), 3866–3873.

    PubMed  Google Scholar 

  30. Ventura, A., Young, A. G., Winslow, M. M., et al. (2008). Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell, 132(5), 875–886.

    Article  PubMed  CAS  Google Scholar 

  31. Cross, M. J., & Claesson-Welsh, L. (2001). FGF and VEGF function in angiogenesis: Signalling pathways, biological responses and therapeutic inhibition. Trends in Pharmacological Sciences, 22(4), 201–207.

    Article  PubMed  CAS  Google Scholar 

  32. Panka, D. J., Atkins, M. B., & Mier, J. W. (2006). Targeting the mitogen-activated protein kinase pathway in the treatment of malignant melanoma. Clinical Cancer Research, 12(7 Pt 2), 2371s–2375s.

    Article  PubMed  CAS  Google Scholar 

  33. Fish, J. E., Santoro, M. M., Morton, S. U., et al. (2008). miR-126 regulates angiogenic signaling and vascular integrity. Developmental Cell, 15(2), 272–284.

    Article  PubMed  CAS  Google Scholar 

  34. Wang S, Aurora AB, Johnson BA, Qi X, McAnally J, Hill JA, Richardson JA, Bassel-Duby R, Olson EN (2008). The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Developmental Cell, 15(2), 261–271.

    Google Scholar 

  35. Kuhnert, F., Mancuso, M. R., Hampton, J., et al. (2008). Attribution of vascular phenotypes of the murine Egfl7 locus to the microRNA miR-126. Development, 135(24), 3989–3993.

    Article  PubMed  CAS  Google Scholar 

  36. Harris, T. A., Yamakuchi, M., Ferlito, M., Mendell, J. T., & Lowenstein, C. J. (2008). MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1. Proceedings of the National Academy of Sciences of the United States of America, 105(5), 1516–1521.

    Article  PubMed  Google Scholar 

  37. Kuijper, S., Turner, C. J., & Adams, R. H. (2007). Regulation of angiogenesis by Eph–ephrin interactions. Trends in Cardiovascular Medicine, 17(5), 145–151.

    Article  PubMed  CAS  Google Scholar 

  38. Fasanaro, P., D'Alessandra, Y., Di Stefano, V., et al. (2008). MicroRNA-210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine kinase ligand Ephrin-A3. Journal of Biological Chemistry, 283(23), 15878–15883.

    Article  PubMed  CAS  Google Scholar 

  39. Pulkkinen, K., Malm, T., Turunen, M., Koistinaho, J., & Yla-Herttuala, S. (2008). Hypoxia induces microRNA miR-210 in vitro and in vivo ephrin-A3 and neuronal pentraxin 1 are potentially regulated by miR-210. FEBS Letters, 582(16), 2397–2401.

    Article  PubMed  CAS  Google Scholar 

  40. Kim, H. W., Haider, H. K., Jiang, S., & Ashraf, M. (2009). Ischemic preconditioning augments survival of stem cells via miR-210 expression by targeting caspase-8 associated protein 2. Journal of Biological Chemistry, 284, 33161–33168.

    Article  PubMed  CAS  Google Scholar 

  41. Lin, Z., Murtaza, I., Wang, K., Jiao, J., Gao, J., & Li, P. F. (2009). miR-23a functions downstream of NFATc3 to regulate cardiac hypertrophy. Proceedings of the National Academy of Sciences of the United States of America, 106(29), 12103–12108.

    Article  PubMed  Google Scholar 

  42. van Rooij, E., Sutherland, L. B., Qi, X., Richardson, J. A., Hill, J., & Olson, E. N. (2007). Control of stress-dependent cardiac growth and gene expression by a microRNA. Science, 316(5824), 575–579.

    Article  PubMed  CAS  Google Scholar 

  43. Callis, T. E., Pandya, K., Seok, H. Y., et al. (2009). MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice. Journal of Clinical Investigation, 119(9), 2772–2786.

    Article  PubMed  CAS  Google Scholar 

  44. Williams, A. H., Liu, N., van Rooij, E., & Olson, E. N. (2009). MicroRNA control of muscle development and disease. Current Opinion in Cell Biology, 21(3), 461–469.

    Article  PubMed  CAS  Google Scholar 

  45. Krutzfeldt, J., Rajewsky, N., Braich, R., et al. (2005). Silencing of microRNAs in vivo with ‘antagomirs’. Nature, 438(7068), 685–689.

    Article  PubMed  CAS  Google Scholar 

  46. Elmen, J., Lindow, M., Schutz, S., et al. (2008). LNA-mediated microRNA silencing in non-human primates. Nature, 452(7189), 896–899.

    Article  PubMed  CAS  Google Scholar 

  47. Lanford, R. E., Hildebrandt-Eriksen, E. S., Petri, A., et al. (2009). Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science, 327, 198–201.

    Article  PubMed  CAS  Google Scholar 

  48. Xin, M., Small, E. M., Sutherland, L. B., et al. (2009). MicroRNAs miR-143 and miR-145 modulate cytoskeletal dynamics and responsiveness of smooth muscle cells to injury. Genes and Development, 23(18), 2166–2178.

    Article  PubMed  CAS  Google Scholar 

  49. Ai, J., Zhang, R., Li, Y., et al. (2010). Circulating microRNA-1 as a potential novel biomarker for acute myocardial infarction. Biochemical and Biophysical Research Communications, 391, 73–77.

    Article  PubMed  CAS  Google Scholar 

  50. Ji, X., Takahashi, R., Hiura, Y., Hirokawa, G., Fukushima, Y., & Iwai, N. (2009). Plasma miR-208 as a biomarker of myocardial injury. Clinical Chemistry, 55(11), 1944–1949.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Eric Olson and Rusty Montgomery for comments and critical review of the manuscript and Jose Cabrera for assistance with the figure.

Conflict of interest

EvR is a scientific co-founder and an employee of miRagen Therapeutics, a company focused on using oligonucleotide-based regulation of miRNAs in the setting of cardiovascular and muscle disease.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva van Rooij.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frost, R.J.A., van Rooij, E. miRNAs as Therapeutic Targets in Ischemic Heart Disease. J. of Cardiovasc. Trans. Res. 3, 280–289 (2010). https://doi.org/10.1007/s12265-010-9173-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-010-9173-y

Keywords

Navigation