Skip to main content

Advertisement

Log in

Coagulation, Protease-Activated Receptors, and Viral Myocarditis

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

The coagulation protease cascade plays an essential role in hemostasis. In addition, a clot contributes to host defense by limiting the spread of pathogens. Coagulation proteases induce intracellular signaling by cleavage of cell surface receptors called protease-activated receptors (PARs). These receptors allow cells to sense changes in the extracellular environment, such as infection. Viruses activate the coagulation cascade by inducing tissue factor expression and by disrupting the endothelium. Virus infection of the heart can cause myocarditis, cardiac remodeling, and heart failure. A recent study using a mouse model have shown that tissue factor, thrombin, and PAR-1 signaling all positively regulate the innate immune during viral myocarditis. In contrast, PAR-2 signaling was found to inhibit interferon-β expression and the innate immune response. These observations suggest that anticoagulants may impair the innate immune response to viral infection and that inhibition of PAR-2 may be a new strategy to reduce viral myocarditis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Shauer, A., Gotsman, I., Keren, A., Zwas, D. R., Hellman, Y., Durst, R., et al. (2013). Acute viral myocarditis: current concepts in diagnosis and treatment. The Israel Medical Association journal : IMAJ, 15(3), 180–185.

    PubMed  Google Scholar 

  2. Schultheiss, H. P., Kuhl, U., & Cooper, L. T. (2011). The management of myocarditis. European heart journal, 32(21), 2616–2625. doi:10.1093/eurheartj/ehr165.

    PubMed  Google Scholar 

  3. Liu, P. P., & Mason, J. W. (2001). Advances in the understanding of myocarditis. Circulation, 104(9), 1076–1082.

    CAS  PubMed  Google Scholar 

  4. Antoniak, S., Boltzen, U., Riad, A., Kallwellis-Opara, A., Rohde, M., Dorner, A., et al. (2008). Viral myocarditis and coagulopathy: increased tissue factor expression and plasma thrombogenicity. Journal of molecular and cellular cardiology, 45(1), 118–126. doi:10.1016/j.yjmcc.2008.03.013.

    CAS  PubMed  Google Scholar 

  5. Imazio, M., & Cooper, L. T. (2013). Management of myopericarditis. Expert review of cardiovascular therapy, 11(2), 193–201. doi:10.1586/erc.12.184.

    CAS  PubMed  Google Scholar 

  6. Blauwet, L. A., & Cooper, L. T. (2010). Myocarditis. Progress in cardiovascular diseases, 52(4), 274–288. doi:10.1016/j.pcad.2009.11.006.

    PubMed  Google Scholar 

  7. Thompson, J. M., & Iwasaki, A. (2008). Toll-like receptors regulation of viral infection and disease. Advanced drug delivery reviews, 60(7), 786–794. doi:10.1016/j.addr.2007.11.003.

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Kemball, C. C., Alirezaei, M., & Whitton, J. L. (2010). Type B coxsackieviruses and their interactions with the innate and adaptive immune systems. Future microbiology, 5(9), 1329–1347. doi:10.2217/fmb.10.101.

    PubMed Central  PubMed  Google Scholar 

  9. Huber, S. (2008). Host immune responses to coxsackievirus B3. Current topics in microbiology and immunology, 323, 199–221.

    CAS  PubMed  Google Scholar 

  10. Yajima, T. (2011). Viral myocarditis: potential defense mechanisms within the cardiomyocyte against virus infection. Future microbiology, 6(5), 551–566. doi:10.2217/fmb.11.40.

    PubMed Central  PubMed  Google Scholar 

  11. Leipner, C., Grun, K., Schneider, I., Gluck, B., Sigusch, H. H., & Stelzner, A. (2004). Coxsackievirus B3-induced myocarditis: differences in the immune response of C57BL/6 and Balb/c mice. Medical microbiology and immunology, 193(2–3), 141–147. doi:10.1007/s00430-003-0199-5.

    CAS  PubMed  Google Scholar 

  12. Weinzierl, A. O., Szalay, G., Wolburg, H., Sauter, M., Rammensee, H. G., Kandolf, R., et al. (2008). Effective chemokine secretion by dendritic cells and expansion of cross-presenting CD4-/CD8+ dendritic cells define a protective phenotype in the mouse model of coxsackievirus myocarditis. Journal of virology, 82(16), 8149–8160. doi:10.1128/JVI.00047-08.

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Negishi, H., Osawa, T., Ogami, K., Ouyang, X., Sakaguchi, S., Koshiba, R., et al. (2008). A critical link between Toll-like receptor 3 and type II interferon signaling pathways in antiviral innate immunity. Proceedings of the National Academy of Sciences of the United States of America, 105(51), 20446–20451. doi:10.1073/pnas.0810372105.

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Richer, M. J., Lavallee, D. J., Shanina, I., & Horwitz, M. S. (2009). Toll-like receptor 3 signaling on macrophages is required for survival following coxsackievirus B4 infection. PloS one, 4(1), e4127. doi:10.1371/journal.pone.0004127.

    PubMed Central  PubMed  Google Scholar 

  15. Abston, E. D., Coronado, M. J., Bucek, A., Bedja, D., Shin, J., Kim, J. B., et al. (2012). Th2 regulation of viral myocarditis in mice: different roles for TLR3 versus TRIF in progression to chronic disease. Clinical & developmental immunology, 2012, 129486. doi:10.1155/2012/129486.

    Google Scholar 

  16. Riad, A., Westermann, D., Zietsch, C., Savvatis, K., Becher, P. M., Bereswill, S., et al. (2011). TRIF is a critical survival factor in viral cardiomyopathy. Journal of Immunology, 186(4), 2561–2570. doi:10.4049/jimmunol.1002029.

    CAS  Google Scholar 

  17. Newman, K. C., & Riley, E. M. (2007). Whatever turns you on: accessory-cell-dependent activation of NK cells by pathogens. Nature reviews Immunology, 7(4), 279–291. doi:10.1038/nri2057.

    CAS  PubMed  Google Scholar 

  18. Wessely, R., Klingel, K., Knowlton, K. U., & Kandolf, R. (2001). Cardioselective infection with coxsackievirus B3 requires intact type I interferon signaling: implications for mortality and early viral replication. Circulation, 103(5), 756–761.

    CAS  PubMed  Google Scholar 

  19. Deonarain, R., Cerullo, D., Fuse, K., Liu, P. P., & Fish, E. N. (2004). Protective role for interferon-beta in coxsackievirus B3 infection. Circulation, 110(23), 3540–3543. doi:10.1161/01.CIR.0000136824.73458.20.

    CAS  PubMed  Google Scholar 

  20. Kuhl, U., Pauschinger, M., Schwimmbeck, P. L., Seeberg, B., Lober, C., Noutsias, M., et al. (2003). Interferon-beta treatment eliminates cardiotropic viruses and improves left ventricular function in patients with myocardial persistence of viral genomes and left ventricular dysfunction. Circulation, 107(22), 2793–2798. doi:10.1161/01.CIR.0000072766.67150.51.

    PubMed  Google Scholar 

  21. Wang, Y. X., da Cunha, V., Vincelette, J., White, K., Velichko, S., Xu, Y., et al. (2007). Antiviral and myocyte protective effects of murine interferon-beta and -{alpha}2 in coxsackievirus B3-induced myocarditis and epicarditis in Balb/c mice. American journal of physiology Heart and circulatory physiology, 293(1), H69–76. doi:10.1152/ajpheart.00154.2007.

    CAS  PubMed  Google Scholar 

  22. Kuhl, U., Lassner, D., von Schlippenbach, J., Poller, W., & Schultheiss, H. P. (2012). Interferon-beta improves survival in enterovirus-associated cardiomyopathy. Journal of the American College of Cardiology, 60(14), 1295–1296. doi:10.1016/j.jacc.2012.06.026.

    PubMed  Google Scholar 

  23. Fensterl, V., & Sen, G. C. (2009). Interferons and viral infections. Biofactors, 35(1), 14–20. doi:10.1002/biof.6.

    CAS  PubMed  Google Scholar 

  24. Yuan, J., Liu, Z., Lim, T., Zhang, H., He, J., Walker, E., et al. (2009). CXCL10 inhibits viral replication through recruitment of natural killer cells in coxsackievirus B3-induced myocarditis. Circulation research, 104(5), 628–638. doi:10.1161/CIRCRESAHA.108.192179.

    CAS  PubMed  Google Scholar 

  25. Godeny, E. K., & Gauntt, C. J. (1987). Murine natural killer cells limit coxsackievirus B3 replication. Journal of Immunology, 139(3), 913–918.

    CAS  Google Scholar 

  26. Mackman, N. (2006). Role of tissue factor in hemostasis and thrombosis. Blood cells, molecules & diseases, 36(2), 104–107. doi:10.1016/j.bcmd.2005.12.008.

    CAS  Google Scholar 

  27. Drake, T. A., Morrissey, J. H., & Edgington, T. S. (1989). Selective cellular expression of tissue factor in human tissues. Implications for disorders of hemostasis and thrombosis. The American journal of pathology, 134(5), 1087–1097.

    CAS  PubMed  Google Scholar 

  28. Fleck, R. A., Rao, L. V., Rapaport, S. I., & Varki, N. (1990). Localization of human tissue factor antigen by immunostaining with monospecific, polyclonal anti-human tissue factor antibody. Thrombosis research, 59(2), 421–437.

    CAS  PubMed  Google Scholar 

  29. Degen, J. L., Bugge, T. H., & Goguen, J. D. (2007). Fibrin and fibrinolysis in infection and host defense. Journal of thrombosis and haemostasis : JTH, 5(Suppl 1), 24–31. doi:10.1111/j.1538-7836.2007.02519.x.

    CAS  PubMed  Google Scholar 

  30. Esmon, C. T., Xu, J., & Lupu, F. (2011). Innate immunity and coagulation. Journal of thrombosis and haemostasis : JTH, 9(Suppl 1), 182–188. doi:10.1111/j.1538-7836.2011.04323.x.

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Flick, M. J., Du, X., Witte, D. P., Jirouskova, M., Soloviev, D. A., Busuttil, S. J., et al. (2004). Leukocyte engagement of fibrin(ogen) via the integrin receptor alphaMbeta2/Mac-1 is critical for host inflammatory response in vivo. The Journal of clinical investigation, 113(11), 1596–1606. doi:10.1172/JCI20741.

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Palumbo, J. S., Talmage, K. E., Massari, J. V., La Jeunesse, C. M., Flick, M. J., Kombrinck, K. W., et al. (2005). Platelets and fibrin(ogen) increase metastatic potential by impeding natural killer cell-mediated elimination of tumor cells. Blood, 105(1), 178–185. doi:10.1182/blood-2004-06-2272.

    CAS  PubMed  Google Scholar 

  33. Key, N. S., Vercellotti, G. M., Winkelmann, J. C., Moldow, C. F., Goodman, J. L., Esmon, N. L., et al. (1990). Infection of vascular endothelial cells with herpes simplex virus enhances tissue factor activity and reduces thrombomodulin expression. Proceedings of the National Academy of Sciences of the United States of America, 87(18), 7095–7099.

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Geisbert, T. W., Young, H. A., Jahrling, P. B., Davis, K. J., Kagan, E., & Hensley, L. E. (2003). Mechanisms underlying coagulation abnormalities in ebola hemorrhagic fever: overexpression of tissue factor in primate monocytes/macrophages is a key event. The Journal of infectious diseases, 188(11), 1618–1629. doi:10.1086/379724.

    CAS  PubMed  Google Scholar 

  35. Goeijenbier, M., van Wissen, M., van de Weg, C., Jong, E., Gerdes, V. E., Meijers, J. C., et al. (2012). Review: viral infections and mechanisms of thrombosis and bleeding. Journal of medical virology, 84(10), 1680–1696. doi:10.1002/jmv.23354.

    CAS  PubMed  Google Scholar 

  36. Funderburg, N. T., Mayne, E., Sieg, S. F., Asaad, R., Jiang, W., Kalinowska, M., et al. (2010). Increased tissue factor expression on circulating monocytes in chronic HIV infection: relationship to in vivo coagulation and immune activation. Blood, 115(2), 161–167. doi:10.1182/blood-2009-03-210179.

    CAS  PubMed  Google Scholar 

  37. Antoniak, S., Owens, A. P., 3rd, Baunacke, M., Williams, J. C., Lee, R. D., Weithauser, A., et al. (2013). PAR-1 contributes to the innate immune response during viral infection. The Journal of clinical investigation, 123(3), 1310–1322. doi:10.1172/JCI66125.

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Shibamiya, A., Hersemeyer, K., Schmidt Woll, T., Sedding, D., Daniel, J. M., Bauer, S., et al. (2009). A key role for Toll-like receptor-3 in disrupting the hemostasis balance on endothelial cells. Blood, 113(3), 714–722. doi:10.1182/blood-2008-02-137901.

    CAS  PubMed  Google Scholar 

  39. Zare, F., Magnusson, M., Mollers, L. N., Jin, T., Tarkowski, A., & Bokarewa, M. (2008). Single-stranded polyinosinic acid oligonucleotides trigger leukocyte production of proteins belonging to fibrinolytic and coagulation cascades. Journal of leukocyte biology, 84(3), 741–747. doi:10.1189/jlb.0506345.

    CAS  PubMed  Google Scholar 

  40. Kato, J., Okamoto, T., Motoyama, H., Uchiyama, R., Kirchhofer, D., Van Rooijen, N., et al. (2013). Interferon-gamma-mediated tissue factor expression contributes to T-cell-mediated hepatitis through induction of hypercoagulation in mice. Hepatology, 57(1), 362–372. doi:10.1002/hep.26027.

    CAS  PubMed  Google Scholar 

  41. Bhattacharyya, M., Karmohapatra, S. K., Bhattacharya, G., Bhattacharya, R., & Sinha, A. K. (2009). The role of leucocytes in the acetyl salicylic acid (aspirin) induced nitric oxide synthesis in the production of interferon-alpha, a potent inhibitor of platelet aggregation and a thrombolytic agent. Journal of thrombosis and thrombolysis, 28(2), 173–184. doi:10.1007/s11239-008-0283-1.

    CAS  PubMed  Google Scholar 

  42. Antoniak, S., Boltzen, U., Eisenreich, A., Stellbaum, C., Poller, W., Schultheiss, H. P., et al. (2009). Regulation of cardiomyocyte full-length tissue factor expression and microparticle release under inflammatory conditions in vitro. Journal of thrombosis and haemostasis : JTH, 7(5), 871–878. doi:10.1111/j.1538-7836.2009.03323.x.

    CAS  PubMed  Google Scholar 

  43. Tomioka, N., Kishimoto, C., Matsumori, A., & Kawai, C. (1985). Mural thrombi in mice with acute viral myocarditis. Japanese circulation journal, 49(12), 1277–1279.

    CAS  PubMed  Google Scholar 

  44. Kojima, J., Miyazaki, S., Fujiwara, H., Kumada, T., & Kawai, C. (1988). Recurrent left ventricular mural thrombi in a patient with acute myocarditis. Heart and vessels, 4(2), 120–122.

    CAS  PubMed  Google Scholar 

  45. Mazza, I. L., Jacobs, J. P., Aldousany, A., Chang, A. C., & Burke, R. P. (1998). Video-assisted cardioscopy for left ventricular thrombectomy in a child. The Annals of thoracic surgery, 66(1), 248–250.

    CAS  PubMed  Google Scholar 

  46. Weikert, U., Rauch, U., Kuhl, U., Hohmann, C., Jaster, M., Pauschinger, M., et al. (2002). Increased thrombocyte activation in dilated cardiomyopathy: a risk factor for development of ventricular thrombosis despite anticoagulant therapy? Zeitschrift für Kardiologie, 91(5), 423–429.

    CAS  PubMed  Google Scholar 

  47. Miyamoto, K., Yasuda, S., Noguchi, T., Tanimoto, T., Kakuchi, H., Morii, I., et al. (2005). Fulminant myocarditis causing severe left heart failure and massive thrombus formation following cardiac tamponade: a case report. Journal of cardiology, 46(1), 25–31.

    PubMed  Google Scholar 

  48. Kuh, J. H., & Seo, Y. (2005). Transatrial resection of a left ventricular thrombus after acute myocarditis. Heart and vessels, 20(5), 230–232. doi:10.1007/s00380-004-0811-7.

    PubMed  Google Scholar 

  49. Lin, K. Y., Kerur, B., Witmer, C. M., Beslow, L. A., Licht, D. J., Ichord, R. N., & Kaufman, B. D. (2013). Thrombotic events in critically ill children with myocarditis. Cardiology in the Young, 9, 1–8. doi:10.1017/S1047951113001145.

    Google Scholar 

  50. Gottdiener, J. S., Gay, J. A., VanVoorhees, L., DiBianco, R., & Fletcher, R. D. (1983). Frequency and embolic potential of left ventricular thrombus in dilated cardiomyopathy: assessment by 2-dimensional echocardiography. The American journal of cardiology, 52(10), 1281–1285.

    CAS  PubMed  Google Scholar 

  51. Tomioka, N., Kishimoto, C., Matsumori, A., & Kawai, C. (1986). Mural thrombus in experimental viral myocarditis in mice: relation between thrombosis and congestive heart failure. Cardiovascular research, 20(9), 665–671.

    CAS  PubMed  Google Scholar 

  52. Kishimoto, C., Ochiai, H., & Sasayama, S. (1992). Intracardiac thrombus in murine coxsackievirus B3 myocarditis. Heart and vessels, 7(2), 76–81.

    CAS  PubMed  Google Scholar 

  53. Nakamura, Y., Nakamura, K., Fukushima-Kusano, K., Ohta, K., Matsubara, H., Hamuro, T., et al. (2003). Tissue factor expression in atrial endothelia associated with nonvalvular atrial fibrillation: possible involvement in intracardiac thrombogenesis. Thrombosis research, 111(3), 137–142.

    CAS  PubMed  Google Scholar 

  54. Szotowski, B., Goldin-Lang, P., Antoniak, S., Bogdanov, V. Y., Pathirana, D., Pauschinger, M., et al. (2005). Alterations in myocardial tissue factor expression and cellular localization in dilated cardiomyopathy. Journal of the American College of Cardiology, 45(7), 1081–1089. doi:10.1016/j.jacc.2004.12.061.

    CAS  PubMed  Google Scholar 

  55. Weikert, U., Kuhl, U., Schultheiss, H. P., & Rauch, U. (2002). Platelet activation is increased in patients with cardiomyopathy: myocardial inflammation and platelet reactivity. Platelets, 13(8), 487–491. doi:10.1080/0953710021000057857.

    CAS  PubMed  Google Scholar 

  56. Schnitt, S. J., Stillman, I. E., Owings, D. V., Kishimoto, C., Dvorak, H. F., & Abelmann, W. H. (1993). Myocardial fibrin deposition in experimental viral myocarditis that progresses to dilated cardiomyopathy. Circulation research, 72(4), 914–920.

    CAS  PubMed  Google Scholar 

  57. Frizelle, S., Schwarz, J., Huber, S. A., & Leslie, K. (1992). Evaluation of the effects of low molecular weight heparin on inflammation and collagen deposition in chronic coxsackievirus B3-induced myocarditis in A/J mice. The American journal of pathology, 141(1), 203–209.

    CAS  PubMed  Google Scholar 

  58. Szotowski, B., Antoniak, S., Poller, W., Schultheiss, H. P., & Rauch, U. (2005). Procoagulant soluble tissue factor is released from endothelial cells in response to inflammatory cytokines. Circulation research, 96(12), 1233–1239. doi:10.1161/01.RES.0000171805.24799.fa.

    CAS  PubMed  Google Scholar 

  59. Coughlin, S. R. (2000). Thrombin signalling and protease-activated receptors. Nature, 407(6801), 258–264. doi:10.1038/35025229.

    CAS  PubMed  Google Scholar 

  60. Antoniak, S., Pawlinski, R., & Mackman, N. (2011). Protease-activated receptors and myocardial infarction. IUBMB life, 63(6), 383–389. doi:10.1002/iub.441.

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Soh, U. J., Dores, M. R., Chen, B., & Trejo, J. (2010). Signal transduction by protease-activated receptors. British journal of pharmacology, 160(2), 191–203. doi:10.1111/j.1476-5381.2010.00705.x.

    CAS  PubMed  Google Scholar 

  62. Kahn, M. L., Zheng, Y. W., Huang, W., Bigornia, V., Zeng, D., Moff, S., et al. (1998). A dual thrombin receptor system for platelet activation. Nature, 394(6694), 690–694. doi:10.1038/29325.

    CAS  PubMed  Google Scholar 

  63. Steinhoff, M., Buddenkotte, J., Shpacovitch, V., Rattenholl, A., Moormann, C., Vergnolle, N., et al. (2005). Proteinase-activated receptors: transducers of proteinase-mediated signaling in inflammation and immune response. Endocrine reviews, 26(1), 1–43. doi:10.1210/er.2003-0025.

    CAS  PubMed  Google Scholar 

  64. Shpacovitch, V., Feld, M., Bunnett, N. W., & Steinhoff, M. (2007). Protease-activated receptors: novel PARtners in innate immunity. Trends in immunology, 28(12), 541–550. doi:10.1016/j.it.2007.09.001.

    CAS  PubMed  Google Scholar 

  65. Moretti, S., Bellocchio, S., Bonifazi, P., Bozza, S., Zelante, T., Bistoni, F., et al. (2008). The contribution of PARs to inflammation and immunity to fungi. Mucosal immunology, 1(2), 156–168. doi:10.1038/mi.2007.13.

    CAS  PubMed  Google Scholar 

  66. Day, J. R., Landis, R. C., & Taylor, K. M. (2006). Aprotinin and the protease-activated receptor 1 thrombin receptor: antithrombosis, inflammation, and stroke reduction. Seminars in cardiothoracic and vascular anesthesia, 10(2), 132–142. doi:10.1177/1089253206288997.

    CAS  PubMed  Google Scholar 

  67. Pan, H. Y., Yamada, H., Chida, J., Wang, S., Yano, M., Yao, M., et al. (2011). Up-regulation of ectopic trypsins in the myocardium by influenza A virus infection triggers acute myocarditis. Cardiovascular research, 89(3), 595–603. doi:10.1093/cvr/cvq358.

    CAS  PubMed  Google Scholar 

  68. Pan, H. Y., Yano, M., & Kido, H. (2011). Effects of inhibitors of Toll-like receptors, protease-activated receptor-2 signalings and trypsin on influenza A virus replication and upregulation of cellular factors in cardiomyocytes. The journal of medical investigation : JMI, 58(1–2), 19–28.

    PubMed  Google Scholar 

  69. Seitz, C., Isken, B., Heynisch, B., Rettkowski, M., Frensing, T., & Reichl, U. (2012). Trypsin promotes efficient influenza vaccine production in MDCK cells by interfering with the antiviral host response. Applied microbiology and biotechnology, 93(2), 601–611. doi:10.1007/s00253-011-3569-8.

    CAS  PubMed  Google Scholar 

  70. Sun, X., Tse, L. V., Ferguson, A. D., & Whittaker, G. R. (2010). Modifications to the hemagglutinin cleavage site control the virulence of a neurotropic H1N1 influenza virus. Journal of virology, 84(17), 8683–8690. doi:10.1128/JVI.00797-10.

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Gomides, L. F., Duarte, I. D., Ferreira, R. G., Perez, A. C., Francischi, J. N., & Klein, A. (2012). Proteinase-activated receptor-4 plays a major role in the recruitment of neutrophils induced by trypsin or carrageenan during pleurisy in mice. Pharmacology, 89(5–6), 275–282. doi:10.1159/000337378.

    CAS  PubMed  Google Scholar 

  72. Sambrano, G. R., Huang, W., Faruqi, T., Mahrus, S., Craik, C., & Coughlin, S. R. (2000). Cathepsin G activates protease-activated receptor-4 in human platelets. The Journal of biological chemistry, 275(10), 6819–6823.

    CAS  PubMed  Google Scholar 

  73. Fairweather, D., Frisancho-Kiss, S., Yusung, S. A., Barrett, M. A., Davis, S. E., Steele, R. A., et al. (2005). IL-12 protects against coxsackievirus B3-induced myocarditis by increasing IFN-gamma and macrophage and neutrophil populations in the heart. Journal of Immunology, 174(1), 261–269.

    CAS  Google Scholar 

  74. Grabie, N., Hsieh, D. T., Buono, C., Westrich, J. R., Allen, J. A., Pang, H., et al. (2003). Neutrophils sustain pathogenic CD8+ T cell responses in the heart. The American journal of pathology, 163(6), 2413–2420. doi:10.1016/S0002-9440(10)63596-1.

    CAS  PubMed  Google Scholar 

  75. Dulon, S., Cande, C., Bunnett, N. W., Hollenberg, M. D., Chignard, M., & Pidard, D. (2003). Proteinase-activated receptor-2 and human lung epithelial cells: disarming by neutrophil serine proteinases. American journal of respiratory cell and molecular biology, 28(3), 339–346. doi:10.1165/rcmb.4908.

    CAS  PubMed  Google Scholar 

  76. Suzuki, T., Yamashita, C., Zemans, R. L., Briones, N., Van Linden, A., & Downey, G. P. (2009). Leukocyte elastase induces lung epithelial apoptosis via a PAR-1-, NF-kappaB-, and p53-dependent pathway. American journal of respiratory cell and molecular biology, 41(6), 742–755. doi:10.1165/rcmb.2008-0157OC.

    CAS  PubMed  Google Scholar 

  77. Lee, J. K., Zaidi, S. H., Liu, P., Dawood, F., Cheah, A. Y., Wen, W. H., et al. (1998). A serine elastase inhibitor reduces inflammation and fibrosis and preserves cardiac function after experimentally-induced murine myocarditis. Nature medicine, 4(12), 1383–1391. doi:10.1038/3973.

    CAS  PubMed  Google Scholar 

  78. Marchant, D., & McManus, B. M. (2009). Matrix metalloproteinases in the pathogenesis of viral heart disease. Trends in cardiovascular medicine, 19(1), 21–26. doi:10.1016/j.tcm.2009.04.001.

    CAS  PubMed  Google Scholar 

  79. Jaffre, F., Friedman, A. E., Hu, Z., Mackman, N., & Blaxall, B. C. (2012). Beta-adrenergic receptor stimulation transactivates protease-activated receptor 1 via matrix metalloproteinase 13 in cardiac cells. Circulation, 125(24), 2993–3003. doi:10.1161/CIRCULATIONAHA.111.066787.

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Yang, E., Boire, A., Agarwal, A., Nguyen, N., O’Callaghan, K., Tu, P., et al. (2009). Blockade of PAR1 signaling with cell-penetrating pepducins inhibits Akt survival pathways in breast cancer cells and suppresses tumor survival and metastasis. Cancer research, 69(15), 6223–6231. doi:10.1158/0008-5472.CAN-09-0187.

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Sharma, R., Prasad, V., McCarthy, E. T., Savin, V. J., Dileepan, K. N., Stechschulte, D. J., et al. (2007). Chymase increases glomerular albumin permeability via protease-activated receptor-2. Molecular and cellular biochemistry, 297(1–2), 161–169. doi:10.1007/s11010-006-9342-0.

    CAS  PubMed  Google Scholar 

  82. Molino, M., Barnathan, E. S., Numerof, R., Clark, J., Dreyer, M., Cumashi, A., et al. (1997). Interactions of mast cell tryptase with thrombin receptors and PAR-2. The Journal of biological chemistry, 272(7), 4043–4049.

    CAS  PubMed  Google Scholar 

  83. Fairweather, D., Frisancho-Kiss, S., Gatewood, S., Njoku, D., Steele, R., Barrett, M., et al. (2004). Mast cells and innate cytokines are associated with susceptibility to autoimmune heart disease following coxsackievirus B3 infection. Autoimmunity, 37(2), 131–145.

    CAS  PubMed  Google Scholar 

  84. Higuchi, H., Hara, M., Yamamoto, K., Miyamoto, T., Kinoshita, M., Yamada, T., et al. (2008). Mast cells play a critical role in the pathogenesis of viral myocarditis. Circulation, 118(4), 363–372. doi:10.1161/CIRCULATIONAHA.107.741595.

    PubMed  Google Scholar 

  85. Gan, X., Liu, D., Huang, P., Gao, W., Chen, X., & Hei, Z. (2012). Mast-cell-releasing tryptase triggers acute lung injury induced by small intestinal ischemia-reperfusion by activating PAR-2 in rats. Inflammation, 35(3), 1144–1153. doi:10.1007/s10753-011-9422-5.

    CAS  PubMed  Google Scholar 

  86. He, S., Aslam, A., Gaca, M. D., He, Y., Buckley, M. G., Hollenberg, M. D., et al. (2004). Inhibitors of tryptase as mast cell-stabilizing agents in the human airways: effects of tryptase and other agonists of proteinase-activated receptor 2 on histamine release. The Journal of pharmacology and experimental therapeutics, 309(1), 119–126. doi:10.1124/jpet.103.061291.

    CAS  PubMed  Google Scholar 

  87. Bazan, J. F., & Fletterick, R. J. (1988). Viral cysteine proteases are homologous to the trypsin-like family of serine proteases: structural and functional implications. Proceedings of the National Academy of Sciences of the United States of America, 85(21), 7872–7876.

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Thibaut, H. J., De Palma, A. M., & Neyts, J. (2012). Combating enterovirus replication: state-of-the-art on antiviral research. Biochemical pharmacology, 83(2), 185–192. doi:10.1016/j.bcp.2011.08.016.

    CAS  PubMed  Google Scholar 

  89. Liang, G., Barker, T., Xie, Z., Charles, N., Rivera, J., & Druey, K. M. (2012). Naive T cells sense the cysteine protease allergen papain through protease-activated receptor 2 and propel TH2 immunity. The Journal of allergy and clinical immunology, 129(5), 1377–1386 e1313. doi:10.1016/j.jaci.2012.02.035.

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Xing, Y., Chen, J., Tu, J., Zhang, B., Chen, X., Shi, H., et al. (2013). The papain-like protease of porcine epidemic diarrhea virus negatively regulates type I interferon pathway by acting as a viral deubiquitinase. The Journal of general virology, 94(Pt 7), 1554–1567. doi:10.1099/vir.0.051169-0.

    CAS  PubMed  Google Scholar 

  91. Schechter, N. M., Brass, L. F., Lavker, R. M., & Jensen, P. J. (1998). Reaction of mast cell proteases tryptase and chymase with protease activated receptors (PARs) on keratinocytes and fibroblasts. Journal of cellular physiology, 176(2), 365–373. doi:10.1002/(SICI)1097-4652(199808)176:2<365::AID-JCP15>3.0.CO;2-2.

    CAS  PubMed  Google Scholar 

  92. Sutherland, M. R., Friedman, H. M., & Pryzdial, E. L. (2007). Thrombin enhances herpes simplex virus infection of cells involving protease-activated receptor 1. Journal of thrombosis and haemostasis : JTH, 5(5), 1055–1061. doi:10.1111/j.1538-7836.2007.02441.x.

    CAS  PubMed  Google Scholar 

  93. Naldini, A., & Carney, D. H. (1996). Thrombin modulation of natural killer activity in human peripheral lymphocytes. Cellular immunology, 172(1), 35–42. doi:10.1006/cimm.1996.0212.

    CAS  PubMed  Google Scholar 

  94. Sutherland, M. R., Ruf, W., & Pryzdial, E. L. (2012). Tissue factor and glycoprotein C on herpes simplex virus type 1 are protease-activated receptor 2 cofactors that enhance infection. Blood, 119(15), 3638–3645. doi:10.1182/blood-2011-08-376814.

    CAS  PubMed  Google Scholar 

  95. Weithaeuser, A., Bobbert, P., Antoniak, S., Boehm, A., Rauch, B.H., Klingel, K., Savvatis, K., Kroemer, H.K., Tschope, C., Stroux, A., Zeichhardt, H., Poller, W., Mackman, N., Schultheiss, H.P., Rauch, U. (2013). Protease-activated receptor 2 regulates the Innate Immune Response to Viral Infection in a CVB3-induced Myocarditis. Journal of the American College of Cardiology, 62(19), 1737–1745. doi:10.1016/j.jacc.2013.05.076.

    Google Scholar 

  96. Nhu, Q. M., Shirey, K., Teijaro, J. R., Farber, D. L., Netzel-Arnett, S., Antalis, T. M., et al. (2010). Novel signaling interactions between proteinase-activated receptor 2 and Toll-like receptors in vitro and in vivo. Mucosal immunology, 3(1), 29–39. doi:10.1038/mi.2009.120.

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Rallabhandi, P., Nhu, Q. M., Toshchakov, V. Y., Piao, W., Medvedev, A. E., Hollenberg, M. D., et al. (2008). Analysis of proteinase-activated receptor 2 and TLR4 signal transduction: a novel paradigm for receptor cooperativity. The Journal of biological chemistry, 283(36), 24314–24325. doi:10.1074/jbc.M804800200.

    CAS  PubMed  Google Scholar 

  98. Williams, J. C., Lee, R. D., Doerschuk, C. M., & Mackman, N. (2011). Effect of PAR-2 Deficiency in Mice on KC Expression after Intratracheal LPS Administration. Journal of signal transduction, 2011, 415195. doi:10.1155/2011/415195.

    PubMed Central  PubMed  Google Scholar 

  99. Eriksson, U., Ricci, R., Hunziker, L., Kurrer, M. O., Oudit, G. Y., Watts, T. H., et al. (2003). Dendritic cell-induced autoimmune heart failure requires cooperation between adaptive and innate immunity. Nature medicine, 9(12), 1484–1490. doi:10.1038/nm960.

    CAS  PubMed  Google Scholar 

  100. Fuse, K., Chan, G., Liu, Y., Gudgeon, P., Husain, M., Chen, M., et al. (2005). Myeloid differentiation factor-88 plays a crucial role in the pathogenesis of Coxsackievirus B3-induced myocarditis and influences type I interferon production. Circulation, 112(15), 2276–2285. doi:10.1161/CIRCULATIONAHA.105.536433.

    CAS  PubMed  Google Scholar 

  101. Frisancho-Kiss, S., Davis, S. E., Nyland, J. F., Frisancho, J. A., Cihakova, D., Barrett, M. A., et al. (2007). Cutting edge: cross-regulation by TLR4 and T cell Ig mucin-3 determines sex differences in inflammatory heart disease. Journal of Immunology, 178(11), 6710–6714.

    CAS  Google Scholar 

  102. Roberts, B. J., Dragon, J. A., Moussawi, M., & Huber, S. A. (2012). Sex-specific signaling through Toll-Like receptors 2 and 4 contributes to survival outcome of coxsackievirus B3 infection in C57Bl/6 mice. Biology of sex differences, 3(1), 25. doi:10.1186/2042-6410-3-25.

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Cimmino, G., & Golino, P. (2013). Platelet biology and receptor pathways. Journal of cardiovascular translational research, 6(3), 299–309. doi:10.1007/s12265-012-9445-9.

    PubMed  Google Scholar 

  104. Smyth, S. S., McEver, R. P., Weyrich, A. S., Morrell, C. N., Hoffman, M. R., Arepally, G. M., et al. (2009). Platelet functions beyond hemostasis. Journal of thrombosis and haemostasis : JTH, 7(11), 1759–1766. doi:10.1111/j.1538-7836.2009.03586.x.

    CAS  PubMed  Google Scholar 

  105. Li, C., Li, J., Li, Y., Lang, S., Yougbare, I., Zhu, G., et al. (2012). Crosstalk between platelets and the immune system: old systems with new discoveries. Advances in hematology, 2012, 384685. doi:10.1155/2012/384685.

    PubMed Central  PubMed  Google Scholar 

  106. Sabri, A., Guo, J., Elouardighi, H., Darrow, A. L., Andrade-Gordon, P., & Steinberg, S. F. (2003). Mechanisms of protease-activated receptor-4 actions in cardiomyocytes. Role of Src tyrosine kinase. The Journal of biological chemistry, 278(13), 11714–11720. doi:10.1074/jbc.M213091200.

    CAS  PubMed  Google Scholar 

  107. Meune, C., Spaulding, C., Mahe, I., Lebon, P., & Bergmann, J. F. (2003). Risks versus benefits of NSAIDs including aspirin in myocarditis: a review of the evidence from animal studies. Drug safety : an international journal of medical toxicology and drug experience, 26(13), 975–981.

    CAS  Google Scholar 

  108. Eyers, S., Weatherall, M., Shirtcliffe, P., Perrin, K., & Beasley, R. (2010). The effect on mortality of antipyretics in the treatment of influenza infection: systematic review and meta-analysis. Journal of the Royal Society of Medicine, 103(10), 403–411. doi:10.1258/jrsm.2010.090441.

    PubMed Central  PubMed  Google Scholar 

  109. Shimazu, T. (2009). A/H1N1 flu. Aspirin in the 1918 pandemic. BMJ, 338, b2398.

    PubMed  Google Scholar 

  110. Starko, K. M. (2009). Salicylates and pandemic influenza mortality, 1918–1919 pharmacology, pathology, and historic evidence. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America, 49(9), 1405–1410. doi:10.1086/606060.

    Google Scholar 

  111. Weitz, J. I., & Gross, P. L. (2012). New oral anticoagulants: which one should my patient use? Hematology / the Education Program of the American Society of Hematology American Society of Hematology Education Program, 2012, 536–540. doi:10.1182/asheducation-2012.1.536.

    PubMed  Google Scholar 

  112. Connolly, S., Ezekowitz, M., Brueckmann, M., Clemens, A., Yusuf, S., Wallentin, L. (2013). eLetter Re: Antoniak et al. PAR-1 contributes to the inate immune response during viral infection. The Journal of clinical investigation http://www.jci.org/eletters/view/66125#sec1. Accessed 1 May 2013.

  113. Malz, R., Becher, M., Westermann, D., Schultheiss, H.P., Rauch, U. (2012). Inhibition of coagulation factor Xa improves left ventricular function during CVB3-induced myocarditis [abstract]. Paper presented at the 78. Jahrestagung der DGK, 2012

  114. Mason, J. W. (2013). Basic research on myocarditis: superb but unrequited. Journal of the American College of Cardiology. doi:10.1016/j.jacc.2013.06.030.

    PubMed  Google Scholar 

  115. Lohman, R. J., Cotterell, A. J., Barry, G. D., Liu, L., Suen, J. Y., Vesey, D. A., et al. (2012). An antagonist of human protease activated receptor-2 attenuates PAR2 signaling, macrophage activation, mast cell degranulation, and collagen-induced arthritis in rats. The FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 26(7), 2877–2887. doi:10.1096/fj.11-201004.

    CAS  Google Scholar 

  116. Sevigny, L. M., Zhang, P., Bohm, A., Lazarides, K., Perides, G., Covic, L., et al. (2011). Interdicting protease-activated receptor-2-driven inflammation with cell-penetrating pepducins. Proceedings of the National Academy of Sciences of the United States of America, 108(20), 8491–8496. doi:10.1073/pnas.1017091108.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Julie C. Williams for her careful and critical review of this manuscript. This work was supported by grants from the Myocarditis Foundation (to S. Antoniak) and the National Institutes of Health (to N. Mackman, HL119523).

Conflict of Interests

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvio Antoniak.

Additional information

Associate Editor Daniel P. Judge oversaw the review of this article

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antoniak, S., Mackman, N. Coagulation, Protease-Activated Receptors, and Viral Myocarditis. J. of Cardiovasc. Trans. Res. 7, 203–211 (2014). https://doi.org/10.1007/s12265-013-9515-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-013-9515-7

Keywords

Navigation