Skip to main content
Log in

Recent advances in transdermal drug delivery

  • Review
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Transdermal delivery of pharmacologically active agents has been extensively studied for the past 40 years. Despite the strong efforts, currently, only about 40 products are in market on about 20 drug molecules, due to the requirements that the patch area should be small enough for the patients to feel comfortable, and to the barrier properties of the stratum corneum. Various approaches to overcome the barrier function of skin through physical and chemical means have been broadly studied. The development of an effective transdermal delivery system is dictated by the unique physicochemical property each drug molecule possesses. In this review, we have summarized various physical and chemical approaches for transdermal flux enhancement, including the application of electricity, ultrasound, microneedle and chemical enhancers. Pressure sensitive adhesive such as acrylics, rubbers and silicones are described together with recent developments. Factors affecting dosage form design, particularly for drug in adhesive system, like adhesion and crystallization are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akimoto, T., Kawahara, K., Nagase Y., and Aoyagi, T., The enhancing effect of oligodimethylsiloxane containing a glucopyranosyl end group. J. Control. Release, 77, 49–57 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Badran, M. M., Kuntsche, J., and Fahr, A., Skin penetration enhancement by a microneedle device (Dermaroller®) in vitro: Dependency on needle size and applied formulation. Eur. J. Pharm. Sci., 36, 511–523 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Barry, B. W., Mode of action of penetration enhancers in human skin. J. Control. Release, 6, 85–97 (1987).

    Article  CAS  Google Scholar 

  • Barry, B. W., Novel mechanisms and devices to enable successful transdermal drug delivery. Eur. J. Pharm. Sci., 14, 101–114 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Benson, H. A. E., Transdermal drug delivery: Penetration enhancement techniques. Curr. Drug Deliv., 2, 23–33 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Burnette, R. R., and Ongpipattanakul, B., Characterization of the permselective properties of excised human skin during Iontophoresis. J. Pharm. Sci., 76, 765–773 (1987).

    Article  CAS  PubMed  Google Scholar 

  • Cheong, H.-A., and Choi, H.-K., Enhanced percutaneous absorption of piroxicam via salt formation with ethano lamines. Pharm. Res., 19, 1375–1380 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Cheong, H.-A., and Choi, H.-K., Effect of ethanolamine salts and enhancers on the percutaneous absorption of piroxicam from a pressure sensitive adhesive matrix. Eur. J. Pharm. Sci., 18, 149–153 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Cho, Y.-J. and Choi, H.-K., Enhancement of percutaneous absorption of ketoprofen: Effect of vehicles and adhesive matrix. Int. J. Pharm., 169, 95–104 (1998).

    Article  CAS  Google Scholar 

  • Choi, A., Gang, H., Chun, I., and Gwak, H., The effects of fatty acids in propylene glycol on the percutaneous absorption of alendronate across the excised hairless mouse skin. Int. J. Pharm., 357, 126–131 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Choi, H.-K., Flynn, G. L., and Amidon, G. L., Transdermal delivery of bioactive peptides: The effect of n-decylmethyl sulfoxide, pH and inhibitors on enkephalin transport. Pharm. Res., 7, 1099–1106 (1990).

    Article  CAS  PubMed  Google Scholar 

  • Chun, M.-K. and Choi, H.-K., Transdermal delivery of estradiol and norethindrone acetate: Effect of vehicles and pressure sensitive adhesive matrix. J. Kor. Pharm. Sci., 35, 173–177 (2005).

    CAS  Google Scholar 

  • Denet, A. R. and Préat, V., Transdermal delivery of timolol by electroporation through human skin. J. Control. Release, 88, 253–262 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Denet, A.-R., Vanbever, R., and Preat V., Skin electroporation for transdermal and topical delivery. Adv. Drug Deliv. Rev., 56, 659–674 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Doh, H.-J., Cho, W.-J., Young, C.-S., Choi, H.-G., Kim, J. S., Lee, C.-H., Kim, D.-D., Synthesis and evaluation of ketorolac ester prodrugs for transdermal delivery. J. Pharm. Sci., 92, 1008–1017 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Drakulic, B. J., Juranic, I. O., Eric, S., and Zloh, M., Role of complexes formation between drugs and penetration enhancers in transdermal delivery. Int. J. Pharm., 363, 40–49 (2008).

    Article  CAS  PubMed  Google Scholar 

  • El-laithy, H. M., Novel transdermal delivery of fimolol maleate using sugar esters: Preclinical and clinical studies. Eur. J. Pharm. Biopharm., 72, 239–245 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Funke, A. P., Gunther, C., Muller, R. H., and Lipp, R., Invitro release and transdermal fluxes of a highly lipophilic drug and of enhancers from matrix TDS. J. Control. Release, 82, 63–70 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Furuishi, T., Oda, S., Saito, H., Fukami, T., Suzuki, T., and Tomono, K., Effect of permeation enhancers on the in vitro percutaneous absorption of pentazocine. Biol. Pharm. Bull., 30, 1350–1353 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Green, P. G., Hinz, R. S., Cullander, C., Yamane, G., and Guy, R. H., Iontophoretic delivery of amino acids and amino acid derivatives across the skin in vitro. Pharm. Res., 8, 1113–1120 (1991).

    Article  CAS  PubMed  Google Scholar 

  • Guillard, E. C., Tfayli, A., Laugel, C., and Guffroy, A. B., Molecular interactions of penetration enhancers within ceramides organization: A FTIR approach. Eur. J. Pharm. Sci., 36, 192–199 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Guy, R. H., Kalia, Y. N., Delgado-Charro, M. B., Merino, V., Lopez, A., and Marro, D., Iontophoresis: Electrorepulsion and electroosmosis. J. Control. Release, 64, 129–132 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Gwak H. S. and Chun I. K., Effect of vehicles and enhancers on the in vitro skin penetration of aspalatone and its enzymatic degradation across rat skins. Arch. Pharm. Res., 24, 572–577 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Gwak, H. S., Oh, S. O., and Chun, I. K., In vitro percutaneous absorption of ondansetron hydrochloride from pressure sensitive adhesive matrices through hairless mouse skin. Arch. Pharm. Res., 26, 644–648 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Hai, N. T., Kim, J., Park, E.-S., and Chi, S.-C., Formulation and biopharmaceutical evaluation of transdermal patch containing benztropine. Int. J. Pharm., 357, 55–60 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Hatanaka, T., Kamon, T., Morigaki, S., Katayama, K., and Koizumi, T., Ion pair skin transport of a zwitterionic drug, cephalexin. J. Control. Release, 66, 63–71 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Hatfield, S. F., Hot melt pressure sensitive adhesives. US Patent 7, 442, 739 (2008).

    Google Scholar 

  • Henry, S., McAllister, D. V., Allen, M. G., and Prausnitz, M. R., Microfabricated microneedles: A novel approach to transdermal drug delivery. J. Pharm. Sci., 87, 922–925 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Hirvonen, J., and Guy, R. H., Iontophoretic delivery across the skin: Electroosmosis and its modulation by drug substances. Pharm. Res., 14, 1258–1263 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Hirvonen, J., Kalia, Y. N., and Guy, R. H., Transdermal delivery of peptides by Iontophoresis. Nat. Biotechnol., 14, 1710–1713 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Ho, K. Y. and Dodou, K., Rheological studies on pressure-sensitive silicone adhesives and drug-in-adhesive layers as a means to characterise adhesive performance. Int. J. Pharm., 333, 24–33 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Jesus, M. and Steven, S., Solubility parameter based drug delivery system and method for altering drug saturation concentration. US Patent 5, 474, 783 (1995).

    Google Scholar 

  • Jesus, M. and Steven, S., Solubility parameter based drug delivery system and method for altering drug saturation concentration. US Patent 5, 656, 286 (1997).

    Google Scholar 

  • Kalia, Y. N., Naik, A., Garrison, J., and Guy, R. H., Iontophoretic drug delivery. Adv. Drug Deliv. Rev., 56, 619–658 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Karande, P., Jain, A., Ergun, K., Kispersky, V., and Mitragotri, S., Design principles of chemical penetration enhancers for transdermal drug delivery. Proc. Natl. Acad. Sci. USA, 102, 4688–4693 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Kim, J.-H., Cho, Y.-J., and Choi, H.-K., Effect of vehicles and pressure sensitive adhesives on the permeation of tacrine across hairless mouse skin. Int. J. Pharm., 196, 105–113 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Kim, B.-D. and Choi, H.-K., Penetration enhancement of β2-selective agonist, tulobuterol, across hairless mouse skin. J. Kor. Pharm. Sci., 33, 79–84 (2003).

    Article  CAS  Google Scholar 

  • Kim, J.-H. and Choi, H.-K., Effect of additives on the crystallization and the permeation of ketoprofen from adhesive matrix. Int. J. Pharm., 236, 81–85 (2002).

    CAS  PubMed  Google Scholar 

  • Kim, J.-H., Lee, C. H., and Choi, H.-K., Transdermal delivery of physostigmine: Effects of enhancers and pressure-sensitive adhesives. Drug Dev. Ind. Pharm., 28, 833–839 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Kotiyan, P. N. and Vavia, P. R., Eudragits: Role as crystallization inhibitors in drug-in-adhesive transdermal systems of estradiol. Eur. J. Pharm. Biopharm., 52, 173–180 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Lee, I. S. P., Stock for labels and tapes utilizing siliconized emulsion based pressure-sensitive adhesives. US Patent 5,234,736 (1993).

  • Lee, C. A.-R. and Moon, H. K., Gravimetric analysis and differential scanning calorimetric studies on glycerininduced skin hydration. Arch. Pharm. Res., 30, 1489–1495 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Marro, D., Kalia, Y. N., Begona Delgado-Charro, M., and Guy, R. H., Contributions of electromigration and electroosmosis to iontophoretic drug delivery. Pharm. Res., 18, 1701–1708 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Mayer, A. and Keller, P., Water resistant, removable acrylic emulsion pressure sensitive adhesive. US Patent 5,420,195 (1995).

  • Merino, G., Kalia, Y. N., Delgado-Charro, M. B., Potts, R. O., and Guy, R. H., Frequency and thermal effects on the enhancement of transdermal transport by sonophoresis. J. Control. Release, 88, 85–94 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Mitragotri, S., Breaking the skin barrier. Adv. Drug Deliv. Rev., 56, 555–556 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Mitragotri, S., Innovation: Healing sound: the use of ultrasound in drug delivery and other therapeutic applications. Nat. Rev. Drug Discov., 4, 255–260 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Mitragotri, S. and Kost, J., Low-frequency sonophoresis: a noninvasive method of drug delivery and diagnostics. Biotechnol. Prog., 16, 488–492 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Myoung, Y. and Choi, H.-K., Effects of vehicles and pressure sensitive adhesives on the penetration of isosorbide dinitrate across the hairless mouse skin. Drug Deliv., 9, 121–126 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Naik, A., Kalia Y. N., and Guy R. H., Transdermal drug delivery: Overcoming the skin’s barrier function. Pharm. Sci. Technol. Today, 3, 318–326 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Ogura, M., Paliwal, S., and Mitragotri, S., Low-frequency sonophoresis: Current status and future prospects. Adv. Drug Deliv. Rev., 60, 1218–1223 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Panchagnula, R., Pillai, O., Nair, V. B., and Ramarao, P., Transdermal Iontophoresis revisited. Curr. Opin. Chem.Biol., 4, 468–473 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Park, E.-S., Chang, S.-Y., Hahn, M., and Chi, S.-C., Enhancing effect of polyoxyethylene alkyl ethers on the skin permeation of ibuprofen. Int. J. Pharm., 209, 109–119 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Park, S.-C. and Choi, H.-K., Development of transdermal drug delivery system for the combination of physostigmine and procyclidine. J. Kor. Pharm. Sci., 31, 181–184 (2001).

    CAS  Google Scholar 

  • Peterson, T., Burton, S., and Ferber, R., In vitro permeability of poly (ethylene-vinyl acetate) and microporous polyethylene membranes. Proceed. Inter. Sym. Control. Release Bioact. Mater., 17, 411 (1990).

    Google Scholar 

  • Potts, R. O. and Guy, R. H., Predicting skin permeability. Pharm. Res., 9, 663–669 (1992).

    Article  CAS  PubMed  Google Scholar 

  • Prausnitz, M. R., Do high-voltage pulses cause changes in skin structure? J. Control. Release, 40, 321–326 (1996).

    Article  CAS  Google Scholar 

  • Prausnitz, M. R., Edelman, E. R., Gimm, J. A., Langer, R., and Weaver, J. C., Transdermal delivery of heparin by skin electroporation. Biol. Technol., 13, 1205–1209 (1995).

    CAS  Google Scholar 

  • Prausnitz, M. R., Bose, V. G., Langer, R., and Weaver, J. C., Electroporation of mammalian skin: A mechanism to enhance transdermal drug delivery. Proc. Natl. Acad. Sci. USA, 90, 10504–10508 (1993).

    Article  CAS  PubMed  Google Scholar 

  • Prausnitz, M. R. and Langer, R., Transdermal drug delivery. Nat. Biotechnol., 26, 1261–1268 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Qvist, M. H., Hoeck, U., Kreilgaard, B., Madsen, F., and Frokjaer, S., Release of chemical permeation enhancers from drug-in-adhesive transdermal patches. Int. J. Pharm., 231, 253–263 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Raghavan, S. L., Trividic, A., Davis, A. F., and Hadgraft, J., Crystallization of hydrocortisone acetate: Influence of polymers. Int. J. Pharm., 212, 213–221 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Rautio, J., Nevalainen, T., Taipale, H., Vepsalainen, J., Gynther, J., Pedersen, T., and Jarvinen, T., Synthesis and in vitro evaluation of aminoacyloxyalkyl esters of 2-(6-methoxy-2-naphthyl) propionic acid as novel naproxen prodrugs for dermal drug delivery. Pharm. Res., 16, 1172–1178 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Raynaud, J.-P., Auges, M., Liorzou, L., Turlier, V., and Lauze, C., Adhesiveness of a new testosterone-in-adhesive matrix patch after extreme conditions. Int. J. Pharm., 375, 28–32 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Ren, C., Fang, L., Li, T., Wang, M., Zhao, L., and He, Z., Effect of permeation enhancers and organic acids on the skin permeation of Indapamide. Int. J. Pharm., 350, 43–47 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Ren, C., Fang, L., Ling, L., Wang, Q., Liu, S., Zhao, L., and He, Z., Design and in vivo evaluation of an Indapamide transdermal patch. Int. J. Pharm., 370, 129–135 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Roderick B. W. and Eric W. S., The role of percutaneous penetration enhancers. Adv. Drug Deliv. Rev., 18, 295–301 (1996).

    Article  Google Scholar 

  • Russell, T. E., Pressure-sensitive hot-melt adhesives. US Patent 3,862,068 (1975).

  • Satas, D., Handbook of pressure sensitive adhesive technology. Van Nostrand Reinhold, New York, (1989).

    Google Scholar 

  • Scheindlin, S., Transdermal drug delivery: Past, present, future. Mol. Interv., 4, 308–312 (2004).

    Article  PubMed  Google Scholar 

  • Sloan, K. B. and Wasdo, S., Designing for topical delivery: Prodrugs can make the difference. Med. Res. Rev., 23, 763–793 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Suh, E.-J., Woo, Y.-A., and Kim, H.-J., Determination of water content in skin by using a FT near infrared spectrometer. Arch. Pharm. Res., 28, 458–462 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Taghizadeh, S. M., Mirzadeh, H., Barikani, M., and Yousefi, M., Miscibility and tack of blends of poly(vinylpyrrolidone)/acrylic pressure-sensitive adhesive. Int. J. Adhes. Adhes., 29, 302–308 (2009).

    Article  CAS  Google Scholar 

  • Tan, H. S. and Pfister, W. R., Pressure-sensitive adhesives for transdermal drug delivery systems. Pharm. Sci. Technol. Today, 2, 60–69 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Tobing, S. D., Klein, A., and White, T. E., Adhesives and method of making same. US Patent 6, 608,134 (2003).

  • Vanbever, R., Langers, G., Montmayeur, S., and Preat, V., Transdermal delivery of fentanyl: Rapid onset of analgesia using skin electroporation. J. Control. Release, 50, 225–235 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Van Buskirk, G. A., Gonzalez, M. A., Shah, V. P., Barnhardt, S., Barrett, C., Berge, S., Cleary, G., Chan, K., Flynn, G., Foster, T., Gale, R., Garrision, R., Gochnour, S., Gotto, A., Govil, S., Gray, V. A., Hammar, J., Harder, S., Hoiberg, C., Hussain, A., Karp, C., Mantelle, H. L. J., Noonan, P., Swanson, D., and Zerbe, Horst. Scale-up of adhesive transdermal drug delivery systems. Eur. J. Pharm. Biopharm., 44, 327–331 (1997).

    Article  Google Scholar 

  • Vanbever, R., Leroy, M.-A., and Préat, V., Transdermal permeation of neutral molecules by electroporation. J. Control. Release, 54, 243–250 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Venkatraman, S. and Gale, R., Skin adhesives and skin adhesion 1. Transdermal drug delivery systems. Biomaterials, 19, 1119–1136 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Villarino, N. and Landoni, M. F., Transdermal drug delivery: A new frontier in the administration of therapeutic drugs to veterinary species. Vet. J., 172, 200–201 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Walters, K. A., Walker, M., and Olejnik, O., Non-ionic surfactant effects on hairless mouse skin permeability characteristics. J. Pharm. Pharmacol., 40, 525–529 (1988).

    CAS  PubMed  Google Scholar 

  • Wokovich, A. M., Prodduturi, S., Doub, W. H., Hussain, A. S., and Buhse, L. F., Transdermal drug delivery system (TDDS) adhesion as a critical safety, efficacy and quality attribute. Eur. J. Pharm. Biopharm., 64, 1–8 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Wolff, H.-M., Optimal process design for the manufacture of transdermal drug delivery systems. PSTT, 3, 173–181 (2000).

    CAS  Google Scholar 

  • Yang, J., Lu, Y.-Y., and Kropp, J. E., Non-whitening emulsion pressure sensitive adhesives. US Patent 6, 013, 722 (2000).

    Google Scholar 

  • Zhao, L., Li, Y., Fang, L., He, Z., Liu, X., Wang, L., Xu, Y., and Ren, C., Transdermal deilvery of tolterodine by Oacylmethol: In vitro/in vivo correlation. Int. J. Pharm., 374, 73–81 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hoo-Kyun Choi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Subedi, R.K., Oh, S.Y., Chun, MK. et al. Recent advances in transdermal drug delivery. Arch. Pharm. Res. 33, 339–351 (2010). https://doi.org/10.1007/s12272-010-0301-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-010-0301-7

Key words

Navigation