Skip to main content
Log in

Combination of paclitaxel- and retinoic acid-incorporated nanoparticles for the treatment of CT-26 colon carcinoma

  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

The aim of this study was to evaluate the antitumor effect of combinatorial targeted therapy with paclitaxel and all-trans retinoic acid (ATRA) nanoparticles in vitro. Paclitaxel-incorporated pullulan acetate (PA) nanoparticles were prepared by the nanoprecipitation-solvent evaporation method. ATRA-incorporated nanoparticles were prepared by dialysis using a methoxy poly(ethylene glycol)-grafted chitosan (ChitoPEG) copolymer. Particle sizes of paclitaxel-incorporated nanoparticles and ATRA-incorporated nanoparticles were about 160 nm and 60 nm, respectively. Nanoparticles were reconstituted in various aqueous media such as deionized water, phosphate-buffered saline, and fetal bovine serum-supplemented cell culture media. The combination of paclitaxel + ATRA (10 + 10 μg/mL) delivered by nanoparticles showed a synergistic antiproliferative effect against CT26 cells that was not observed with other combinations. Furthermore, the activity of MMP-2, a key enzyme in tumor cell invasion, was significantly decreased in cells treated with the combination of paclitaxel and ATRA while other combinations and single agents did not significantly affect its activity. A matrigel assay supported these results, indicating that paclitaxel/ATRA combination nanoparticles are effective for the inhibition of the invasion of tumor cells. The results of the present study suggest that combination treatment with paclitaxel and ATRA could be an effective treatment for the inhibition of tumor cell proliferation and invasion, and that nanoparticles are promising candidates for antitumor drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Arbuck, S. G., Taxol (paclitaxel): future directions. Ann. Oncol., 5, S59–S62 (1994).

    PubMed  Google Scholar 

  • Bouterfa, H., Picht, T., Kess, D., Herbold, C., Noll, E., Black, P. M., Roosen, K., and Tonn, J. C., Retinoids inhibit human glioma cell proliferation and migration in primary cell cultures but not in established cell lines. Neurosurgery, 46, 419–430 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Bussemer, T., Dashevsky, A., and Bodmeier, R., A pulsatile drug delivery system based on rupturable coated hard gelatin capsules. J. Control. Release, 93, 331–339 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Cabrespine, A., Bay, J. O., Barthomeuf, C., Curé, H., Chollet, P., and Debiton, E., In vitro assessment of cytotoxic agent combinations for hormone-refractory prostate cancer treatment. Anticancer Drugs, 16, 417–422 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Conley, B. A., Egorin, M. J., Sridhara, R., Finley, R., Hemady, R., Wu, S., Tait, N. S., and Van Echo, D. A., Phase I clinical trial of all-trans-retinoic acid with correlation of its pharmacokinetics and pharmacodynamics. Cancer Chemother. Pharmacol., 39, 291–299 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Croy, S. R. and Kwon, G. S., Polymeric micelles for drug delivery. Curr. Pharm. Des., 12, 4669–4684 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Cryan, S. A., Carrier-based strategies for targeting protein and peptide drugs to the lungs. AAPS J., 7, E20–E41 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Das, A., Banik, N. L., and Ray, S. K., Retinoids induced astrocytic differentiation with down regulation of telomerase activity and enhanced sensitivity to taxol for apoptosis in human glioblastoma T98G and U87MG cells. J. Neurooncol., 87, 9–22 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Eniola, A. O. and Hammer, D. A., Artificial polymeric cells for targeted drug delivery. J. Control. Release, 87, 15–22 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Ettinger, D. S., Taxol in the treatment of lung cancer. J. Natl. Cancer Inst. Monogr., 15, 177–179 (1993).

    PubMed  Google Scholar 

  • Ferraresi, V., Giampaolo, M. A., Gabriele, A., Mansueto, G., Buccilli, A., Giannarelli, D., Ciccarese, M., and Gamucci, T., Activity and toxicity of oxaliplatin and bolus fluorouracil plus leucovorin in pretreated colorectal cancer patients: a phase II study. J. Exp. Clin. Cancer Res., 24, 187–196 (2005).

    PubMed  CAS  Google Scholar 

  • Forastiere, A. A., Current and future trials of Taxol (paclitaxel) in head and neck cancer. Ann. Oncol., 5, S51–S54 (1994).

    PubMed  Google Scholar 

  • Frankel, S. R., Eardley, A., Lauwers, G., Weiss, M., and Warrell, R. P. Jr., The “retinoic acid syndrome” in acute promyelocytic leukemia. Ann. Intern. Med., 117, 292–296 (1992).

    PubMed  CAS  Google Scholar 

  • García-García, H. M., Vaina, S., Tsuchida, K., and Serruys, P. W., Drug-eluting stents. Arch. Cardiol. Mex., 76, 297–319 (2006).

    PubMed  Google Scholar 

  • Giannini, F., Maestro, R., Vukosavljevic, T., Pomponi, F., and Boiocchi, M., All-trans, 13-cis and 9-cis retinoic acids induce a fully reversible growth inhibition in HNSCC cell lines: implications for in vivo retinoic acid use. Int. J. Cancer, 70, 194–200 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Gogate, U. S., Schwartz, P. A., and Agharkar, S. N., Effect of unpurified Cremophor EL on the solution stability of paclitaxel. Pharm. Dev. Technol., 14, 1–8 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Gray, W. A. and Granada, J. F., Drug-coated balloons for the prevention of vascular restenosis. Circulation, 121, 2672–2680 (2010).

    Article  PubMed  Google Scholar 

  • Gref, R., Minamitake, Y., Peracchia, M. T., Trubetskoy, V., Torchilin, V., and Langer, R., Biodegradable long-circulating polymeric nanospheres. Science, 263, 1600–1603 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Hardman, W. E., Moyer, M. P., and Cameron, I. L., Efficacy of treatment of colon, lung and breast human carcinoma xenografts with: doxorubicin, cisplatin, irinotecan or topotecan. Anticancer Res., 19, 2269–2274 (1999).

    PubMed  CAS  Google Scholar 

  • Horwitz, S. B., Mechanism of action of taxol. Trends Pharmacol. Sci., 13, 134–136 (1992).

    Article  PubMed  CAS  Google Scholar 

  • Hruby, M., Konak, C., and Ulbrich, K., Polymeric micellar pH-sensitive drug delivery system for doxorubicin. J. Control. Release, 103, 137–148 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Huang, M. E., Ye, Y. C., Chen, S. R., Chai, J. R., Lu, J. X., Zhoa, L., Gu, L. J., and Wang, Z. Y., Use of all-trans retinoic acid in the treatment of acute promyelocytic leukemia. Blood, 72, 567–572 (1988).

    PubMed  CAS  Google Scholar 

  • Jeong, Y. I., Nah, J. W., Lee, H. C., Kim, S. H., and Cho, C. S., Adriamycin release from flower-type polymeric micelle based on star-block copolymer composed of poly(gamma-benzyl l-glutamate) as the hydrophobic part and poly (ethylene oxide) as the hydrophilic part. Int. J. Pharm., 188, 49–58 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Jeong, Y. I., Seo, S. J., Park, I. K., Lee, H. C., Kang, I. C., Akaike, T., and Cho, C. S., Cellular recognition of paclitaxelloaded polymeric nanoparticles composed of poly(gammabenzyl L-glutamate) and poly(ethylene glycol) diblock copolymer endcapped with galactose moiety. Int. J. Pharm., 296, 151–161 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Jeong, Y. I., Kim, S. H., Jung, T. Y., Kim, I. Y., Kang, S. S., Jin, Y. H., Ryu, H. H., Sun, H. S., Jin, S. G., Kim, K. K., Ahn, K. Y., and Jung, S., Polyion complex micelles composed of all-trans retinoic acid and poly(ethylene glycol)-grafted-chitosan. J. Pharm. Sci., 95, 2348–2360 (2006a).

    Article  PubMed  CAS  Google Scholar 

  • Jeong, Y. I., Na, H. S., Oh, J. S., Choi, K. C., Song, C. E., and Lee, H. C., Adriamycin release from self-assembling nanospheres of poly(DL-lactide-co-glycolide)-grafted pullulan. Int. J. Pharm., 322, 154–160 (2006b).

    Article  PubMed  CAS  Google Scholar 

  • Jeong, Y. I., Na, H. S., Cho, K. O., Lee, H. C., Nah, J. W., and Cho, C. S., Antitumor activity of adriamycin-incorporated polymeric micelles of poly(γ-benzyl L-glutamate)/poly (ethylene oxide). Int. J. Pharm., 365, 150–156 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Jung, S. W., Jeong, Y. I., Kim, Y. H., and Kim, S. H., Self-assembled polymeric nanoparticles of poly(ethylene glycol) grafted pullulan acetate as a novel drug carrier. Arch. Pharm. Res., 27, 562–569 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Kalemkerian, G. P., Jasti, R. K., Celano, P., Nelkin, B. D., and Mabry, M., All-trans retinoic acid alters myc gene expression and inhibits in vitro progression in small cell lung cancer. Cell Growth Differ., 5, 55–60 (1994).

    PubMed  CAS  Google Scholar 

  • Karmakar, S., Banik, N. L., Patel, S. J., and Ray, S. K., Combination of all-trans retinoic acid and taxol regressed glioblastoma T98G xenografts in nude mice. Apoptosis, 12, 2077–2087 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Karmakar, S., Banik, N. L., and Ray, S. K., Combination of all-trans retinoic acid and paclitaxel-induced differentiation and apoptosis in human glioblastoma U87MG xenografts in nude mice. Cancer, 112, 596–607 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Kim, D. G., Jeong, Y. I., and Nah, J. W., All-trans retinoic acid release from polyion-complex micelles of methoxy poly(ethylene glycol) grafted chitosan. J. Appl. Polym. Sci., 105, 3246–3254 (2007).

    Article  CAS  Google Scholar 

  • Krupitza, G., Hulla, W., Harant, H., Dittrich, E., Kallay, E., Huber, H., Grunt, T., and Dittrich, C., Retinoic acid induced death of ovarian carcinoma cells correlates with c-myc stimulation. Int. J. Cancer, 61, 649–657 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Kwon, G., Suwa, S., Yokoyama, M., Okano, T., Sakurai, Y., and Kataoka, K., Enhanced tumor accumulation and prolonged circulation times of micelle-forming poly(ethylene oxide-aspartate) block copolymer-adriamycin conjugates. J. Control. Release, 29, 17–23 (1994).

    Article  CAS  Google Scholar 

  • Kwon, G. S., Naito, M., Yokoyama, M., Okano, T., Sakurai, Y., and Kataoka, K., Physical entrapment of adriamycin in AB block copolymer micelles. Pharm. Res., 12, 192–195 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Lim, S. J. and Kim, C. K., Formulation parameters determining the physicochemical characteristics of solid lipid nanoparticles loaded with all-trans retinoic acid. Int. J. Pharm., 243, 135–146 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Lotan, R., Retinoids as modulators of tumor cell invasion and metastasis. Semin. Cancer Biol., 2, 197–208 (1991).

    PubMed  CAS  Google Scholar 

  • Muindi, J. R. F., Frankel, S. R., Miller, W. H. Jr., Jakubowski, A., Scheinberg, D. A., Young, C. W., Dmitrovsky, E., and Warrell, R. P. Jr., Continuous treatment with all-transretinoic acid causes a progressive reduction in plasma drug concentrations: implications for relapse and retinoid “resistance” in patients with acute promyelocytic leukemia. Blood, 79, 299–303 (1992).

    PubMed  CAS  Google Scholar 

  • Na, H. S., Lim, Y. K., Jeong, Y. I., Lee, H. S., Lim, Y. J., Kang, M. S., Cho, C. S., and Lee, H. C., Combination antitumor effects of micelle-loaded anticancer drugs in a CT-26 murine colorectal carcinoma model. Int. J. Pharm., 383, 192–200 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Nagai, S., Takenaka, K., Sonobe, M., Wada, H., and Tanaka, F., Schedule-dependent synergistic effect of pemetrexed combined with gemcitabine against malignant pleural mesothelioma and non-small cell lung cancer cell lines. Chemotherapy, 54, 166–175 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Neijt, J. P., New therapy for ovarian cancer. N. Engl. J. Med., 334, 50–51 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Noguchi, Y., Wu, J., Duncan, R., Strohalm, J., Ulbrich, K., Akaike, T., and Maeda, H., Early phase tumor accumulation of macromolecules: a great difference in clearance rate between tumor and normal tissues. Jpn. J. Cancer Res., 89, 307–314 (1998).

    PubMed  CAS  Google Scholar 

  • Petrak, K., Essential properties of drug-targeting delivery systems. Drug Discov. Today, 10, 1667–1673 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Ravi Kumar, M. N., Nano and microparticles as controlled drug delivery devices. J. Pharm. Pharm. Sci., 3, 234–258 (2000).

    PubMed  CAS  Google Scholar 

  • Ridwelski, K., Gebauer, T., Fahlke, J., Kroning, H., Kettner, E., Meyer, F., Eichelmann, K., and Lippert, H., Combination chemotherapy with docetaxel and cisplatin for locally advanced and metastatic gastric cancer. Ann. Oncol., 12, 47–51 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Rowinsky, E. K. and Donehower, R. C., Paclitaxel (taxol). N. Engl. J. Med., 332, 1004–1014 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Saltz, L. B., Cox, J. V., Blanke, C., Rosen, L. S., Fehrenbacher, L., Moore, M. J., Maroun, J. A., Ackland, S. P., Locker, P. K., Pirotta, N., Elfring, G. L., and Miller, L. L., Irinotecan plus fluorouracil and leucovorin for metastatic colorectal cancer. Irinotecan Study Group. N. Engl. J. Med., 343, 905–914 (2000).

    Article  CAS  Google Scholar 

  • Sarkar, K. and Yang, H., Encapsulation and extended release of anti-cancer anastrozole by stealth nanoparticles. Drug Deliv., 15, 343–346 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Sofou, S., Radionuclide carriers for targeting of cancer. Int. J. Nanomed., 3, 181–199 (2008).

    Article  CAS  Google Scholar 

  • Soriano, A. F., Helfrich, B., Chan, D. C., Heasley, L. E., Bunn, P. A. Jr., and Chou, T. C., Synergistic effects of new chemopreventive agents and conventional cytotoxic agents against human lung cancer cell lines. Cancer Res., 59, 6178–6184 (1999).

    PubMed  CAS  Google Scholar 

  • Szuts, E. Z. and Harosi, F. I., Solubility of retinoids in water. Arch. Biochem. Biophys., 287, 297–304 (1991).

    Article  PubMed  CAS  Google Scholar 

  • ten Tije, A. J., Verweij, J., Loos, W. J., and Sparreboom, A., Pharmacological effects of formulation vehicles: implications for cancer chemotherapy. Clin. Pharmacokinet., 42, 665–685 (2003).

    Article  PubMed  Google Scholar 

  • Torchilin, V., Antibody-modified liposomes for cancer chemotherapy. Expert Opin. Drug Deliv., 5, 1003–1025 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Vaishampayan, U., Flaherty, L., Du, W., and Hussain, M., Phase II evaluation of paclitaxel, α-interferon, and cisretinoic acid in advanced renal cell carcinoma. Cancer, 92, 519–523 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Yokoyama, M., Miyauchi, M., Yamada, N., Okano, T., Sakurai, Y., and Kataoka, K., Characterization and anticancer activity of the micelle-forming polymeric anticancer drug adriamycin-conjugated poly(ethylene glycol)-poly(aspartic acid) block copolymer. Cancer Res., 50, 1693–1700 (1990).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyun Chul Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, GY., Jeong, YI., Lee, S.J. et al. Combination of paclitaxel- and retinoic acid-incorporated nanoparticles for the treatment of CT-26 colon carcinoma. Arch. Pharm. Res. 34, 407–417 (2011). https://doi.org/10.1007/s12272-011-0308-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-011-0308-8

Key words

Navigation