Skip to main content
Log in

Layer-by-layer assembly of multilayer films for controlled drug release

  • Review
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Drug efficacy has been improved using various methods that enhance targeting, decrease toxicity, and facilitate timely and sustained drug release. To achieve these properties, various drug loading and release platforms have been developed. Layer-by-layer (LbL) self-assembly is widely used to generate controlled and sustained drug release LbL multilayer films because it allows desired functions and structures to be obtained through a simple procedure. In this review article, we highlight controlled drug release from LbL self-assembling films with diverse release kinetics, particularly with regard to mechanisms of drug release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Byon, H.R., S.W. Lee, S. Chen, P.T. Hammond, and Y. Shao-Horn. 2011. Thin films of carbon nanotubes and chemically reduced graphenes for electrochemical micro-capacitors. Carbon 49: 457–467.

    Article  CAS  Google Scholar 

  • Decher, G. 1997. Fuzzy nanoassemblies: Toward layered polymeric multicomposites. Science 277: 1232–1237.

    Article  CAS  Google Scholar 

  • Gillies, E.R., and J.M.J. Frechet. 2005. pH-Responsive copolymer assemblies for controlled release of doxorubicin. Bioconjugate Chemistry 16: 361–368.

    Article  CAS  PubMed  Google Scholar 

  • He, P., and M. Bayachou. 2005. Layer-by-layer fabrication and characterization of DNA-wrapped single-walled carbon nanotube particles. Langmuir 21: 6086–6092.

    Article  CAS  PubMed  Google Scholar 

  • Hong, J., and S.W. Kang. 2010. One-pot preparation of titania-nanoparticles through hairy and crew-cut type micelle templates. Industrial & Engineering Chemistry Research 49: 9124–9127.

    Article  CAS  Google Scholar 

  • Hong, J., and S.W. Kang. 2012. Insulin release bio-platform from all nano-container assembled thin films. Materials Science and Engineering C 32: 1988–1992.

    Article  CAS  Google Scholar 

  • Hong, J., J.Y. Han, H. Yoon, P. Joo, T. Lee, E. Seo, K. Char, and B.-S. Kim. 2011a. Carbon-based layer-by-layer nanostructures: From films to hollow capsules. Nanoscale 3: 4515–4531.

    Article  CAS  PubMed  Google Scholar 

  • Hong, J., B.-S. Kim, K. Char, and P.T. Hammond. 2011b. Inherent charge-shifting polyelectrolyte multilayer blends: A facile route for tunable protein release from surfaces. Biomacromolecules 12: 2975–2981.

    Article  CAS  PubMed  Google Scholar 

  • Hong, J., N.J. Shah, A.C. Drake, P.C. DeMuth, J.B. Lee, J. Chen, and P.T. Hammond. 2012. Graphene multilayers as gates for multi-week sequential release of proteins from surfaces. ACS Nano 6: 81–88.

    Article  CAS  PubMed  Google Scholar 

  • Huang, S.-L., and R.C. MacDonald. 2004. Acoustically active liposomes for drug encapsulation and ultrasound-triggered release. Biochimica et Biophysica Acta (BBA) Biomembranes 1665: 134–141.

    Article  CAS  Google Scholar 

  • Kim, B.S., S.W. Lee, H. Yoon, M.S. Strano, Y. Shao-Horn, and P.T. Hammond. 2010. Pattern transfer printing of multiwalled carbon nanotube multilayers and application in biosensors. Chemistry of Materials 22: 4791–4797.

    Article  CAS  Google Scholar 

  • Lee, D., M.F. Rubner, and R.E. Cohen. 2006. All-nanoparticle thin-film coatings. Nano Letters 6: 2305–2312.

    Article  CAS  PubMed  Google Scholar 

  • Lee, D., D. Omolade, R.E. Cohen, and M.F. Rubner. 2007. pH-Dependent structure and properties of TiO2/SiO2 nanoparticle multilayer thin films. Chemistry of Materials 19: 1427–1433.

    Article  CAS  Google Scholar 

  • Lee, D.W., T.-K. Hong, D. Kang, J. Lee, M. Heo, J.Y. Kim, B.-S. Kim, and H.S. Shin. 2011. Highly controllable transparent and conducting thin films using layer-by-layer assembly of oppositely charged reduced graphene oxides. Journal of Materials Chemistry 21: 3438–3442.

    Article  CAS  Google Scholar 

  • Lynn, D.M. 2007. Peeling back the layers: Controlled erosion and triggered disassembly of multilayered polyelectrolyte thin films. Advanced Materials 19: 4118–4130.

    Article  CAS  Google Scholar 

  • Lynn, D.M., and R. Langer. 2000. Degradable poly(β-amino esters): Synthesis, characterization, and self-assembly with plasmid DNA. Journal of the American Chemical Society 122: 10761–10768.

    Article  CAS  Google Scholar 

  • Min, Y., and P.T. Hammond. 2011. Catechol-modified polyions in layer-by-layer assembly to enhance stability and sustain release of biomolecules: A bioinspired approach. Chemistry of Materials 23: 5349–5357.

    Article  CAS  Google Scholar 

  • Olek, M., J. Ostrander, S. Jurga, H. Mohwald, N. Kotov, K. Kempa, and M. Giersig. 2004. Layer-by-layer assembled composites from multiwall carbon nanotubes with different morphologies. Nano Letters 4: 1889–1895.

    Article  CAS  Google Scholar 

  • Qu, X., G. Lu, E. Tsuchida, and T. Komatsu. 2008. Protein nanotubes comprised of an alternate layer-by-layer assembly using a polycation as an electrostatic glue. Chemistry A European Journal 14: 10303–10308.

    Article  CAS  Google Scholar 

  • Rzepecki, L.M., K.M. Hansen, and J.H. Waite. 1992. Characterization of a cystine-rich polyphenolic protein family from the blue mussel Mytilus edulis L. Biological Bulletin 183: 123–137.

    Article  CAS  Google Scholar 

  • Schmidt, D.J., J.S. Moskowitz, and P.T. Hammond. 2010. Electrically triggered release of a small molecule drug from a polyelectrolyte multilayer coating. Chemistry of Materials 22: 6416–6425.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shukla, A., K.E. Fleming, H.F. Chuang, T.M. Chau, C.R. Loose, G.N. Stephanopoulos, and P.T. Hammond. 2010. Controlling the release of peptide antimicrobial agents from surfaces. Biomaterials 31: 2348–2357.

    Article  CAS  PubMed  Google Scholar 

  • Srivastava, S., and N.A. Kotov. 2008. Composite layer-by-layer (LBL) assembly with inorganic nanoparticles and nanowires. Accounts of Chemical Research 41: 1831–1841.

    Article  CAS  PubMed  Google Scholar 

  • Stenekes, R.J.H., A.E. Loebies, C.M. Fernandes, D.J.A. Crommelin, and W.E. Hennink. 2000. Controlled release of liposomes from biodegradable dextran microspheres: A novel delivery concept. Pharmaceutical Research 17: 664–669.

    Article  Google Scholar 

  • Su, X., B.-S. Kim, S.R. Kim, P.T. Hammond, and D.J. Irvine. 2009. Layer-by-layer-assembled multilayer films for transcutaneous drug and vaccine delivery. ACS Nano 3: 3719–3729.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Talelli, M., M. Iman, A.K. Varkouhi, C.J.F. Rijcken, R.M. Schiffelers, T. Etrych, K. Ulbrich, C.F. van Nostrum, T. Lanners, G. Storm, and W.E. Hennink. 2010. Core-crosslinked polymeric micelles with controlled release of covalently entrapped doxorubicin. Biomaterials 31: 7797–7804.

    Article  CAS  PubMed  Google Scholar 

  • Veerabadran, N.G., D. Mongayt, V. Torchilin, R.R. Price, and Y.M. Lvov. 2009. Organized shells on clay nanotubes for controlled release of macromolecules. Macromolecular Rapid Communications 30: 99–103.

    Article  CAS  PubMed  Google Scholar 

  • Volodkin, D., Y. Arntz, P. Schaaf, H. Moehwald, J.-C. Voegel, and V. Ball. 2008. Composite multilayered biocompatible polyelectrolyte films with intact liposomes: Stability and temperature triggered dye release. Soft Matter 4: 122–130.

    Article  CAS  Google Scholar 

  • Wang, K., and Z. He. 2002. Alginate–konjac glucomannan–chitosan beads as controlled release matrix. International Journal of Pharmaceutics 244: 117–126.

    Article  CAS  PubMed  Google Scholar 

  • Wang, C., S. Ye, L. Dai, X. Liu, and Z. Tong. 2007a. Enzymatic desorption of layer-by-layer assembled multilayer films and effects on the release of encapsulated indomethacin microcrystals. Carbohydrate Research 342: 2237–2243.

    Article  CAS  PubMed  Google Scholar 

  • Wang, X., X. Hu, A. Daley, O. Rabotyagova, P. Cebe, and D.L. Kaplan. 2007b. Nanolayer biomaterial coatings of silk fibroin for controlled release. Journal of Controlled Release 21: 190–199.

    Article  CAS  Google Scholar 

  • Wood, K.C., J.Q. Boedicker, D.M. Lynn, and P.T. Hammond. 2005. Tunable drug release from hydrolytically degradable layer-by-layer thin films. Langmuir 21: 1603–1609.

    Article  CAS  PubMed  Google Scholar 

  • Wood, K.C., N.S. Zacharia, D.J. Schmidt, S.N. Wrightman, B.J. Andaya, and P.T. Hammond. 2008. Electroactive controlled release thin films. Proceedings of the National Academy of Sciences 105: 2280–2285.

    Article  CAS  Google Scholar 

  • Zhu, Y., J. Shi, W. Shen, X. Dong, J. Feng, M. Ruan, and Y. Li. 2005. Stimuli-responsive controlled drug release from a hollow mesoporous silica sphere/polyelectrolyte multilayer core–shell structure. Angewandte Chemie International Edition 44: 5053–5087.

    Google Scholar 

Download references

Acknowledgments

This research was supported by the Chung-Ang University Excellent Student Scholarship in 2013 and National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (NRF-2012M3A9C6050104).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinkee Hong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, D., Hong, J. Layer-by-layer assembly of multilayer films for controlled drug release. Arch. Pharm. Res. 37, 79–87 (2014). https://doi.org/10.1007/s12272-013-0289-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-013-0289-x

Keywords

Navigation