Skip to main content
Log in

Application of magnetic nanoparticle for controlled tissue assembly and tissue engineering

  • Review
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Magnetic nanoparticles have been subjected to extensive studies in the past few decades owing to their promising potentials in biomedical applications. The versatile intrinsic properties of magnetic nanoparticles enable their use in many biomedical applications. Recently, magnetic nanoparticles were utilized to control the cell’s function. In addition, intracellular delivery of magnetic nanoparticles allowed cell’s positioning by appropriate use of magnetic field and created cellular cluster. Furthermore, magnetic nanoparticles have been utilized to assemble more complex tissue structures than those that are achieved by conventional scaffold-based tissue engineering strategies. This review addresses recent work in the use magnetic nanoparticle for controlled tissue assembly and complex tissue formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Cartmell, S.H., J. Dobson, S.B. Verschueren, and A.J. El Haj. 2002. Development of magnetic particle techniques for long-term culture of bone cells with intermittent mechanical activation. IEEE Transactions on Nanobioscience 1: 92–97.

    Article  PubMed  Google Scholar 

  • Cartmell, S.H., A. Keramane, G.R. Kirkham, S.B. Verschueren, J.L. Magnay, A.J.E. Haj, and J. Dobson. 2005. Use of magnetic particles to apply mechanical forces for bone tissue engineering purposes. Journal of Physics 17: 77.

    CAS  Google Scholar 

  • Chen, C.S. 2008. Mechanotransduction: A field pulling together? Journal of Cell Science 121: 3285–3292.

    Article  CAS  PubMed  Google Scholar 

  • Cho, M.H., E.J. Lee, M. Son, J.H. Lee, D. Yoo, J.W. Kim, S.W. Park, J.S. Shin, and J. Cheon. 2012. A magnetic switch for the control of cell death signalling in in vitro and in vivo systems. Nature Materials 11: 1038–1043.

    Article  CAS  PubMed  Google Scholar 

  • Daniel-Da-Silva, A.L., R.S. Carvalho, and T. Trindade. 2013. Magnetic hydrogel nanocomposites and composite nanoparticles: A review of recent patented works. Recent Patents on Nanotechnology 7: 153–166.

    Article  CAS  PubMed  Google Scholar 

  • De Cogan, F., A. Booth, J.E. Gough, and S.J. Webb. 2011. Conversion of magnetic impulses into cellular responses by self-assembled nanoparticle–vesicle hydrogels. Angewandte Chemie International Edition 50: 12290–12293.

    Article  Google Scholar 

  • Dvir, T., B.P. Timko, D.S. Kohane, and R. Langer. 2011. Nanotechnological strategies for engineering complex tissues. Nature Nanotechnology 6: 13–22.

    Article  CAS  PubMed  Google Scholar 

  • Etoc, F., D. Lisse, Y. Bellaiche, J. Piehler, M. Coppey, and M. Dahan. 2013. Subcellular control of Rac-GTPase signalling by magnetogenetic manipulation inside living cells. Nature Nanotechnology 8: 193–198.

    Article  CAS  PubMed  Google Scholar 

  • Fayol, D., C.L. Visage, J. Ino, F. Gazeau, D. Letourneur, and C. Wilhelm. 2013. Design of biomimetic vascular grafts with magnetic endothelial patterning. Cell Transplantation 22: 2105–2118.

    Article  PubMed  Google Scholar 

  • Ferreira, L., J.M. Karp, L. Nobre, and R. Langer. 2008. New opportunities: the use of nanotechnologies to manipulate and track stem cells. Cell Stem Cell 3: 136–146.

    Article  CAS  PubMed  Google Scholar 

  • Griffin, D.R., and A.M. Kasko. 2012. Photodegradable macromers and hydrogels for live cell encapsulation and release. Journal of the American Chemical Society 134: 13103–13107.

    Article  CAS  Google Scholar 

  • Guillotin, B., and F. Guillemot. 2011. Cell patterning technologies for organotypic tissue fabrication. Trends in Biotechnology 29: 183–190.

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann, C., E. Mazari, S. Lallet, R. Le Borgne, V. Marchi, C. Gosse, and Z. Gueroui. 2013. Spatiotemporal control of microtubule nucleation and assembly using magnetic nanoparticles. Nature Nanotechnology 8: 199–205.

    Article  CAS  PubMed  Google Scholar 

  • Hou, R., G. Zhang, G. Du, D. Zhan, Y. Cong, Y. Cheng, and J. Fu. 2013. Magnetic nanohydroxyapatite/PVA composite hydrogels for promoted osteoblast adhesion and proliferation. Colloids and Surfaces B 103: 318–325.

    Article  CAS  Google Scholar 

  • Ingber, D.E. 1997. Tensegrity: The architectural basis of cellular mechanotransduction. Annual Review of Physiology 59: 575–599.

    Article  CAS  PubMed  Google Scholar 

  • Ino, K., A. Ito, and H. Honda. 2007. Cell patterning using magnetite nanoparticles and magnetic force. Biotechnology and Bioengineering 97: 1309–1317.

    Article  CAS  PubMed  Google Scholar 

  • Ino, K., M. Okochi, and H. Honda. 2009. Application of magnetic force-based cell patterning for controlling cell–cell interactions in angiogenesis. Biotechnology and Bioengineering 102: 882–890.

    Article  CAS  PubMed  Google Scholar 

  • Ito, A., M. Hayashida, H. Honda, K. Hata, H. Kagami, M. Ueda, and T. Kobayashi. 2004. Construction and harvest of multilayered keratinocyte sheets using magnetite nanoparticles and magnetic force. Tissue Engineering 10: 873–880.

    Article  CAS  PubMed  Google Scholar 

  • Kamei, G., T. Kobayashi, S. Ohkawa, W. Kongcharoensombat, N. Adachi, K. Takazawa, H. Shibuya, M. Deie, K. Hattori, J.L. Goldberg, and M. Ochi. 2013. Articular cartilage repair with magnetic mesenchymal stem cells. The American Journal of Sports Medicine 41: 1255–1264.

    Article  PubMed  Google Scholar 

  • Kane, R.S., S. Takayama, E. Ostuni, D.E. Ingber, and G.M. Whitesides. 1999. Patterning proteins and cells using soft lithography. Biomaterials 20: 2363–2376.

    Article  CAS  PubMed  Google Scholar 

  • Kikuchi, A., and T. Okano. 2005. Nanostructured designs of biomedical materials: applications of cell sheet engineering to functional regenerative tissues and organs. Journal of Controlled Release 101: 69–84.

    Article  CAS  PubMed  Google Scholar 

  • Kito, T., R. Shibata, M. Ishii, H. Suzuki, T. Himeno, Y. Kataoka, Y. Yamamura, T. Yamamoto, N. Nishio, S. Ito, Y. Numaguchi, T. Tanigawa, J.K. Yamashita, N. Ouchi, H. Honda, K. Isobe, and T. Murohara. 2013. iPS cell sheets created by a novel magnetite tissue engineering method for reparative angiogenesis. Scientific Reports 3: 1418.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Krebs, M.D., R.M. Erb, B.B. Yellen, B. Samanta, A. Bajaj, V.M. Rotello, and E. Alsberg. 2009. Formation of ordered cellular structures in suspension via label-free negative magnetophoresis. Nano Letters 9: 1812–1817.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee, H.J., C. Yu, T. Chansakul, S. Varghese, N.S. Hwang, and J.H. Elisseeff. 2008. Enhanced chondrogenic differentiation of embryonic stem cells by coculture with hepatic cells. Stem Cells and Development 17: 555–563.

    Article  CAS  PubMed  Google Scholar 

  • Levenberg, S., J. Rouwkema, M. Macdonald, E.S. Garfein, D.S. Kohane, D.C. Darland, R. Marini, C.A. Van Blitterswijk, R.C. Mulligan, P.A. D’amore, and R. Langer. 2005. Engineering vascularized skeletal muscle tissue. Nature Biotechnology 23: 879–884.

    Article  CAS  PubMed  Google Scholar 

  • Loh, Q.L., and C. Choong. 2013. Three-dimensional scaffolds for tissue engineering: Role of porosity and pore size. Tissue Engineering Part B 19: 485–502.

    Article  CAS  Google Scholar 

  • Mannix, R.J., S. Kumar, F. Cassiola, M. Montoya-Zavala, E. Feinstein, M. Prentiss, and D.E. Ingber. 2008. Nanomagnetic actuation of receptor-mediated signal transduction. Nature Nanotechnology 3: 36–40.

    Article  CAS  PubMed  Google Scholar 

  • Orr, A.W., B.P. Helmke, B.R. Blackman, and M.A. Schwartz. 2006. Mechanisms of mechanotransduction. Developmental Cell 10: 11–20.

    Article  CAS  PubMed  Google Scholar 

  • Perea, H., J. Aigner, J.T. Heverhagen, U. Hopfner, and E. Wintermantel. 2007. Vascular tissue engineering with magnetic nanoparticles: Seeing deeper. Journal of Tissue Engineering and Regenerative Medicine 1: 318–321.

    Article  CAS  PubMed  Google Scholar 

  • Sapir, Y., S. Cohen, G. Friedman, and B. Polyak. 2012. The promotion of in vitro vessel-like organization of endothelial cells in magnetically responsive alginate scaffolds. Biomaterials 33: 4100–4109.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sensenig, R., Y. Sapir, C. Macdonald, S. Cohen, and B. Polyak. 2012. Magnetic nanoparticle-based approaches to locally target therapy and enhance tissue regeneration in vivo. Nanomedicine (Lond) 7: 1425–1442.

    Article  CAS  Google Scholar 

  • Shimizu, K., A. Ito, and H. Honda. 2007a. Mag-seeding of rat bone marrow stromal cells into porous hydroxyapatite scaffolds for bone tissue engineering. Journal of Bioscience and Bioengineering 104: 171–177.

    Article  CAS  PubMed  Google Scholar 

  • Shimizu, K., A. Ito, T. Yoshida, Y. Yamada, M. Ueda, and H. Honda. 2007b. Bone tissue engineering with human mesenchymal stem cell sheets constructed using magnetite nanoparticles and magnetic force. Journal of Biomedical Materials Research, Part B 82: 471–480.

    Article  Google Scholar 

  • Skaat, H., O. Ziv-Polat, A. Shahar, D. Last, Y. Mardor, and S. Margel. 2012. Magnetic scaffolds enriched with bioactive nanoparticles for tissue engineering. Advanced Healthcare Materials 1: 168–171.

    Article  CAS  PubMed  Google Scholar 

  • Sniadecki, N.J. 2010. A tiny touch: Activation of cell signaling pathways with magnetic nanoparticles. Endocrinology 151: 451–457.

    Article  CAS  PubMed  Google Scholar 

  • Sniadecki, N.J., A. Anguelouch, M.T. Yang, C.M. Lamb, Z. Liu, S.B. Kirschner, Y. Liu, D.H. Reich, and C.S. Chen. 2007. Magnetic microposts as an approach to apply forces to living cells. Proceedings of the National Academy of Sciences of the United States of America 104: 14553–14558.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Souza, G.R., J.R. Molina, R.M. Raphael, M.G. Ozawa, D.J. Stark, C.S. Levin, L.F. Bronk, J.S. Ananta, J. Mandelin, M.M. Georgescu, J.A. Bankson, J.G. Gelovani, T.C. Killian, W. Arap, and R. Pasqualini. 2010. Three-dimensional tissue culture based on magnetic cell levitation. Nature Nanotechnology 5: 291–296.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi, H., M. Nakayama, K. Itoga, M. Yamato, and T. Okano. 2011. Micropatterned thermoresponsive polymer brush surfaces for fabricating cell sheets with well-controlled orientational structures. Biomacromolecules 12: 1414–1418.

    Article  CAS  PubMed  Google Scholar 

  • Tseng, P., J.W. Judy, and D. Di Carlo. 2012. Magnetic nanoparticle-mediated massively parallel mechanical modulation of single-cell behavior. Nature Methods 9: 1113–1119.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Veiseh, M., B.T. Wickes, D.G. Castner, and M. Zhang. 2004. Guided cell patterning on gold-silicon dioxide substrates by surface molecular engineering. Biomaterials 25: 3315–3324.

    Article  CAS  PubMed  Google Scholar 

  • Vogel, V., and M. Sheetz. 2006. Local force and geometry sensing regulate cell functions. Nature Reviews Molecular Cell Biology 7: 265–275.

    Article  CAS  PubMed  Google Scholar 

  • Whatley, B.R., X. Li, N. Zhang, and X. Wen. 2013. Magnetic-directed patterning of cell spheroids. Journal of Biomedical Materials Research, Part A. doi:10.1002/jbm.a.34797.

    Google Scholar 

  • Wilhelm, C., L. Bal, P. Smirnov, I. Galy-Fauroux, O. Clement, F. Gazeau, and J. Emmerich. 2007. Magnetic control of vascular network formation with magnetically labeled endothelial progenitor cells. Biomaterials 28: 3797–3806.

    Article  CAS  PubMed  Google Scholar 

  • Xu, F., F. Inci, O. Mullick, U.A. Gurkan, Y. Sung, D. Kavaz, B. Li, E.B. Denkbas, and U. Demirci. 2012. Release of magnetic nanoparticles from cell-encapsulating biodegradable nanobiomaterials. ACS Nano 6: 6640–6649.

    Article  CAS  PubMed  Google Scholar 

  • Xu, F., C.A. Wu, V. Rengarajan, T.D. Finley, H.O. Keles, Y. Sung, B. Li, U.A. Gurkan, and U. Demirci. 2011. Three-dimensional magnetic assembly of microscale hydrogels. Advanced Materials 23: 4254–4260.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yamamoto, Y., A. Ito, M. Kato, Y. Kawabe, K. Shimizu, H. Fujita, E. Nagamori, and M. Kamihira. 2009. Preparation of artificial skeletal muscle tissues by a magnetic force-based tissue engineering technique. Journal of Bioscience and Bioengineering 108: 538–543.

    Article  CAS  PubMed  Google Scholar 

  • Yang, J., M. Yamato, T. Shimizu, H. Sekine, K. Ohashi, M. Kanzaki, T. Ohki, K. Nishida, and T. Okano. 2007. Reconstruction of functional tissues with cell sheet engineering. Biomaterials 28: 5033–5043.

    Article  CAS  PubMed  Google Scholar 

  • You, M.H., M.K. Kwak, D.H. Kim, K. Kim, A. Levchenko, D.Y. Kim, and K.Y. Suh. 2010. Synergistically enhanced osteogenic differentiation of human mesenchymal stem cells by culture on nanostructured surfaces with induction media. Biomacromolecules 11: 1856–1862.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yuet, K.P., D.K. Hwang, R. Haghgooie, and P.S. Doyle. 2010. Multifunctional superparamagnetic Janus particles. Langmuir 26: 4281–4287.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, X., J. Kim, C.A. Cezar, N. Huebsch, K. Lee, K. Bouhadir, and D.J. Mooney. 2011. Active scaffolds for on-demand drug and cell delivery. Proceedings of the National Academy of Sciences of the United States of America 108: 67–72.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ziv-Polat, O., H. Skaat, A. Shahar, and S. Margel. 2012. Novel magnetic fibrin hydrogel scaffolds containing thrombin and growth factors conjugated iron oxide nanoparticles for tissue engineering. International Journal of Nanomedicine 7: 1259–1274.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by SNU Engineering-Medicine Cooperation Research Grant and Research Settlement Fund for new faculty of SNU. This research was also supported by National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2013071521).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathaniel S. Hwang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, E.A., Yim, H., Heo, J. et al. Application of magnetic nanoparticle for controlled tissue assembly and tissue engineering. Arch. Pharm. Res. 37, 120–128 (2014). https://doi.org/10.1007/s12272-013-0303-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-013-0303-3

Keywords

Navigation