Skip to main content
Log in

A versatile cooperative template-directed coating method to synthesize hollow and yolk-shell mesoporous zirconium titanium oxide nanospheres as catalytic reactors

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The design of hollow mesoporous nanostructures for cascade catalytic reactions can inject new vitality into the development of nanostructures. In this study, we report a versatile cooperative template-directed coating method for the synthesis of hollow and yolk-shell mesoporous zirconium titanium oxide nanospheres with varying compositions (ZrO2 content from 0 to 100%), high surface areas (465 m2·g−1) and uniform mesopores. In particular, the hexadecylamine (HDA) used in the coating procedure serves as a soft template for silica@mesostructured metal oxide core-shell nanosphere formation. By a facile solvothermal treatment route with an ammonia solution and calcination in air, the silica@mesostructured zirconium titanium oxide spheres can be converted into highly uniform hollow zirconium titanium oxide spheres. By simply replacing hard template silica nanospheres with core-shell silica nanocomposites, the synthesis approach can be further used to prepare yolk-shell mesoporous structures through the coating and etching process. The approach is similar to the preparation of mesoporous silica nanocomposites from the self-assembly of the core, the soft template cetyltrimethylammonium bromide (CTAB) and a silica precursor and can be extended as a general method to coat mesoporous zirconium titanium oxide on other commonly used hard templates (e.g., mesoporous silica spheres, mesoporous organosilica ellipsoids, polymer spheres, and carbon nanospheres). The presence of highly permeable mesoporous channels in the zirconium titanium oxide shells has been demonstrated by the reduction of 4-nitrophenol with yolk-shell Au@mesoporous zirconium titanium oxide as the catalyst. Moreover, a cascade catalytic reaction including an acid catalyzed step and a catalytic hydrogenation to afford benzimidazole derivatives can be carried out very effectively by using the accessible acidity of the yolk-shell structured mesoporous zirconium titanium oxide spheres containing a Pd core as a bifunctional catalyst, which makes the hollow zirconium titanium oxide spheres a practicable candidate for advanced catalytic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lou, X. W.; Archer, L. A.; Yang, Z. C. Hollow micro-/ nanostructures: Synthesis and applications. Adv. Mater. 2008, 20, 3987–4019.

    Article  Google Scholar 

  2. An, K.; Hyeon, T. Synthesis and biomedical applications of hollow nanostructures. Nano Today 2009, 4, 359–373.

    Article  Google Scholar 

  3. Sun, Y.; Mayers, B.; Xia, Y. Metal nanostructures with hollow interiors. Adv. Mater. 2003, 15, 641–646.

    Article  Google Scholar 

  4. Goldberger, J.; He, R. R.; Zhang, Y. F.; Lee, S.; Yan, H. Q.; Choi, H. J.; Yang, P. D. Single-crystal gallium nitride nanotubes. Nature 2003, 422, 599–602.

    Article  Google Scholar 

  5. Tang, S. H.; Huang, X. Q.; Chen, X. L.; Zheng, N. F. Hollow mesoporous zirconia nanocapsules for drug delivery. Adv. Funct. Mater. 2010, 20, 2442–2447.

    Article  Google Scholar 

  6. Kim, S. W.; Kim, M.; Lee, W. Y.; Hyeon, T. Fabrication of hollow palladium spheres and their successful application to the recyclable heterogeneous catalyst for Suzuki coupling reactions. J. Am. Chem. Soc. 2002, 124, 7642–7643.

    Article  Google Scholar 

  7. Yao, Y.; McDowell, M. T.; Ryu, I.; Wu, H.; Liu, N.; Hu, L. B.; Nix, W. D.; Cui, Y. Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. Nano Lett. 2011, 11, 2949–2954.

    Article  Google Scholar 

  8. Gao, C. B.; Zhang, Q.; Lu, Z. D.; Yin, Y. D. Templated synthesis of metal nanorods in silica nanotubes. J. Am. Chem. Soc. 2011, 133, 19706–19709.

    Article  Google Scholar 

  9. Yang, P. P.; Quan, Z. W.; Hou, Z. Y.; Li, C. X.; Kang, X. J.; Cheng, Z. Y.; Lin, J. A magnetic, luminescent and mesoporous core-shell structured composite material as drug carrier. Biomaterials 2009, 30, 4786–4795.

    Article  Google Scholar 

  10. Zhao, Y.; Jiang, L. Hollow micro/nanomaterials with multilevel interior structures. Adv. Mater. 2009, 21, 3621–3638.

    Article  Google Scholar 

  11. Liu, J.; Qiao, S. Z.; Chen, J. S.; Lou, X. W.; Xing, X. R.; Lu, G. Q. Yolk/shell nanoparticles: New platforms for nanoreactors, drug delivery and lithium-ion batteries. Chem. Commun. 2011, 47, 12578–12591.

    Article  Google Scholar 

  12. Kamata, K.; Lu, Y.; Xia, Y. N. Synthesis and characterization of monodispersed core-shell spherical colloids with movable cores. J. Am. Chem. Soc. 2003, 125, 2384–2385.

    Article  Google Scholar 

  13. Arnal, P. M.; Comotti, M.; Schüth, F. High-temperature-stable catalysts by hollow sphere encapsulation. Angew. Chem. Int. Ed. 2006, 45, 8224–8227.

    Article  Google Scholar 

  14. Lee, J.; Park, J. C.; Song, H. A nanoreactor framework of a Au@SiO2 yolk/shell structure for catalytic reduction of p-nitrophenol. Adv. Mater. 2008, 20, 1523–1528.

    Article  Google Scholar 

  15. Huang, X. Q.; Guo, C. Y.; Zuo, J. Q.; Zheng, N. F.; Stucky, G. D. An assembly route to inorganic catalytic nanoreactors containing sub-10-nm gold nanoparticles with anti-aggregation properties. Small 2009, 5, 361–365.

    Article  Google Scholar 

  16. Park, J. C.; Song, H. Metal@silica yolk-shell nanostructures as versatile bifunctional nanocatalysts. Nano Res. 2011, 4, 33–49.

    Article  Google Scholar 

  17. Ikeda, S.; Ishino, S.; Harada, T.; Okamoto, N.; Sakata, T.; Mori, H.; Kuwabata, S.; Torimoto, T.; Matsumura, M. Ligand-free platinum nanoparticles encapsulated in a hollow porous carbon shell as a highly active heterogeneous hydrogenation catalyst. Angew. Chem. Int. Ed. 2006, 45, 7063–7066.

    Article  Google Scholar 

  18. Yeo, K. M.; Choi, S.; Anisur, R. M.; Kim, J.; Lee, I. S. Surfactant-free platinum-on-gold nanodendrites with enhanced catalytic performance for oxygen reduction. Angew. Chem. Int. Ed. 2011, 50, 745–748.

    Article  Google Scholar 

  19. Lou, X. W.; Yuan, C. L.; Archer, L. A. Double-walled SnO2 nano-cocoons with movable magnetic cores. Adv. Mater. 2007, 19, 3328–3332.

    Article  Google Scholar 

  20. Liu, J.; Qiao, S. Z.; Budi Hartono, S.; Lu, G. Q. Monodisperse yolk-shell nanoparticles with a hierarchical porous structure for delivery vehicles and nanoreactors. Angew. Chem. Int. Ed. 2010, 49, 4981–4985.

    Article  Google Scholar 

  21. Li, W.; Deng, Y. H.; Wu, Z. X.; Qian, X. F.; Yang, J. P.; Wang, Y.; Gu, D.; Zhang, F.; Tu, B.; Zhao, D. Y. Hydrothermal etching assisted crystallization: A facile route to functional yolk-shell titanate microspheres with ultrathin nanosheets-assembled double shells. J. Am. Chem. Soc. 2011, 133, 15830–15833.

    Article  Google Scholar 

  22. Zhang, W. M.; Hu, J. S.; Guo, Y. G.; Zheng, S. F.; Zhong, L. S.; Song, W. G.; Wan, L. J. Tin-nanoparticles encapsulated in elastic hollow carbon spheres for high-performance anode material in lithium-ion batteries. Adv. Mater. 2008, 20, 1160–1165.

    Article  Google Scholar 

  23. Kim, J.; Piao, Y. Z.; Lee, N.; Park, Y. I.; Lee, I. H.; Lee, J. H.; Paik, S. R.; Hyeon, T. Magnetic nanocomposite spheres decorated with NiO nanoparticles for a magnetically recyclable protein separation system. Adv. Mater. 2010, 22, 57–60.

    Article  Google Scholar 

  24. Zhu, Y. F.; Ikoma, T.; Hanagata, N.; Kaskel, S. Rattle-type Fe3O4@SiO2 hollow mesoporous spheres as carriers for drug delivery. Small 2010, 6, 471–478.

    Article  Google Scholar 

  25. Liu, J.; Yang, H. Q.; Kleitz, F.; Chen, Z. G.; Yang, T. Y.; Strounina, E.; Lu, G. Q.; Qiao, S. Z. Yolk-shell hybrid materials with a periodic mesoporous organosilica shell: Ideal nanoreactors for selective alcohol oxidation. Adv. Funct. Mater. 2012, 22, 591–599.

    Article  Google Scholar 

  26. Fang, X. L.; Liu, Z. H.; Hsieh, M. F.; Chen, M.; Liu, P. X.; Chen, C.; Zheng, N. F. Hollow mesoporous aluminosilica spheres with perpendicular pore channels as catalytic nanoreactors. ACS Nano 2012, 6, 4434–4444.

    Article  Google Scholar 

  27. Tan, L. F.; Chen, D.; Liu, H. Y.; Tang, F. Q. A silica nanorattle with a mesoporous shell: An ideal nanoreactor for the preparation of tunable gold cores. Adv. Mater. 2010, 22, 4885–4889.

    Article  Google Scholar 

  28. Qiao, S. Z.; Lin, C. X.; Jin, Y. G.; Li, Z.; Yan, Z. M.; Hao, Z. Q.; Huang, Y. N.; Lu, G. Q. Surface-functionalized periodic mesoporous organosilica hollow spheres. J. Phys. Chem. C 2009, 113, 8673–8682.

    Article  Google Scholar 

  29. Wu, X. J.; Xu, D. S. Soft template synthesis of yolk/silica shell particles. Adv. Mater. 2010, 22, 1516–1520.

    Article  Google Scholar 

  30. Guan, B. Y.; Wang, X.; Xiao, Y.; Liu, Y. L.; Huo, Q. S. A versatile cooperative template-directed coating method to construct uniform microporous carbon shells for multifunctional core-shell nanocomposites. Nanoscale 2013, 5, 2469–2475.

    Article  Google Scholar 

  31. Chen, Y.; Chen, H. R.; Guo, L. M.; He, Q. J.; Chen, F.; Zhou, J.; Feng, J. W.; Shi, J. L. Hollow/rattle-type mesoporous nanostructures by a structural difference-based selective etching strategy. ACS Nano 2010, 4, 529–539.

    Article  Google Scholar 

  32. Yu, M.; Lin, J.; Fang, J. Silica spheres coated with YVO4:Eu3+ layers via sol-gel process: A simple method to obtain spherical core-shell phosphors. Chem. Mater. 2005, 17, 1783–1791.

    Article  Google Scholar 

  33. Yin, Y. D.; Rioux, R. M.; Erdonmez, C. K.; Hughes, S.; Somorjai, G. A.; Alivisatos, A. P. Formation of hollow nanocrystals through the nanoscale kirkendall effect. Science 2004, 304, 711–714.

    Article  Google Scholar 

  34. Li, J.; Zeng, H. C. Hollowing Sn-doped TiO2 nanospheres via Ostwald ripening. J. Am. Chem. Soc. 2007, 129, 15839–15847.

    Article  Google Scholar 

  35. Ding, S. J.; Chen, J. S.; Qi, G.; Duan, X. N.; Wang, Z. Y.; Giannelis, E. P.; Archer, L. A.; Lou, X. W. Formation of SnO2 hollow nanospheres inside mesoporous silica nanoreactors. J. Am. Chem. Soc. 2011, 133, 21–23.

    Article  Google Scholar 

  36. Zhang, Q.; Lee, I.; Ge, J. P.; Zaera, F.; Yin, Y. D. Surface-protected etching of mesoporous oxide shells for the stabilization of metal nanocatalysts. Adv. Funct. Mater. 2010, 20, 2201–2214.

    Article  Google Scholar 

  37. Yang, Y.; Liu, J.; Li, X. B.; Liu, X.; Yang, Q. H. Organosilane-assisted transformation from core-shell to yolk-shell nanocomposites. Chem. Mater. 2011, 23, 3676–3684.

    Article  Google Scholar 

  38. Fang, X. L.; Chen, C.; Liu, Z. H.; Liu, P. X.; Zheng, N. F. A cationic surfactant assisted selective etching strategy to hollow mesoporous silica spheres. Nanoscale 2011, 3, 1632–1639.

    Article  Google Scholar 

  39. Wong, Y. J.; Zhu, L. F.; Teo, W. S.; Tan, Y. W.; Yang, Y. H.; Wang, C.; Chen, H. Y. Revisiting the Stöber method: Inhomogeneity in silica shells. J. Am. Chem. Soc. 2011, 133, 11422–11425.

    Article  Google Scholar 

  40. Caruso, F.; Caruso, R. A.; Möhwald, H. Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science 1998, 282, 1111–1114.

    Article  Google Scholar 

  41. Joo, S. H.; Park, J. Y.; Tsung, C. K.; Yamada, Y.; Yang, P. D.; Somorjai, G. A. Thermally stable Pt/mesoporous silica core-shell nanocatalysts for high-temperature reactions. Nat. Mater. 2009, 8, 126–131.

    Article  Google Scholar 

  42. Kang, X. J.; Cheng, Z. Y.; Yang, D. M.; Ma, P. A.; Shang, M. M.; Peng, C.; Dai, Y. L.; Lin, J. Design and synthesis of multifunctional drug carriers based on luminescent rattle-type mesoporous silica microspheres with a thermosensitive hydrogel as a controlled switch. Adv. Funct. Mater. 2012, 22, 1470–1481.

    Article  Google Scholar 

  43. Lei, J. Y.; Wang, L. Z.; Zhang, J. L. Superbright multifluorescent core-shell mesoporous nanospheres as trackable transport carrier for drug. ACS Nano 2011, 5, 3447–3455.

    Article  Google Scholar 

  44. Niu, D. C.; Ma, Z.; Li, Y. S.; Shi, J. L. Synthesis of core-shell structured dual-mesoporous silica spheres with tunable pore size and controllable shell thickness. J. Am. Chem. Soc. 2010, 132, 15144–15147.

    Article  Google Scholar 

  45. Gai, S. L.; Yang, P. P.; Li, C. X.; Wang, W. X.; Dai, Y. L.; Niu, N.; Lin, J. Synthesis of magnetic, up-conversion luminescent, and mesoporous core-shell-structured nanocomposites as drug carriers. Adv. Funct. Mater. 2010, 20, 1166–1172.

    Article  Google Scholar 

  46. Cauda, V.; Schlossbauer, A.; Kecht, J.; Zürner, A.; Bein, T. Multiple core-shell functionalized colloidal mesoporous silica nanoparticles. J. Am. Chem. Soc. 2009, 131, 11361–11370.

    Article  Google Scholar 

  47. Qian, X. F.; Du, J. M.; Li, B.; Si, M.; Yang, Y. S.; Hu, Y. Y.; Niu, G. X.; Zhang, Y. H.; Xu, H. L.; Tu, B. et al. Controllable fabrication of uniform core-shell structured zeolite@SBA-15 composites. Chem. Sci. 2011, 2, 2006–2016.

    Article  Google Scholar 

  48. Han, Y.; Pitukmanorom, P.; Zhao, L.; Ying, J. Y. Generalized synthesis of mesoporous shells on zeolite crystals. Small 2011, 7, 326–332.

    Article  Google Scholar 

  49. Guan, B. Y.; Cui, Y.; Ren, Z. Y.; Qiao, Z. A.; Wang, L.; Liu, Y. L.; Huo, Q. S. Highly ordered periodic mesoporous organosilica nanoparticles with controllable pore structures. Nanoscale 2012, 4, 6588–6596.

    Article  Google Scholar 

  50. Liu, J. N.; Bu, W. B.; Zhang, S. J.; Chen, F.; Xing, H. Y.; Pan, L. M.; Zhou, L. P.; Peng, W. J.; Shi, J. L. Controlled synthesis of uniform and monodisperse upconversion core/mesoporous silica shell nanocomposites for bimodal imaging. Chem. Eur. J. 2012, 18, 2335–2341.

    Article  Google Scholar 

  51. Han, Y.; Zhao, L.; Ying, J. Y. Entropy-driven helical mesostructure formation with achiral cationic surfactant templates. Adv. Mater. 2007, 19, 2454–2459.

    Article  Google Scholar 

  52. Han, Y.; Zhang, D. L.; Chng, L. L.; Sun, J. L.; Zhao, L.; Zou, X. D.; Ying, J. Y. A tri-continuous mesoporous material with a silica pore wall following a hexagonal minimal surface. Nat. Chem. 2009, 1, 123–127.

    Article  Google Scholar 

  53. Piao, Y. Z.; Burns, A.; Kim, J.; Wiesner, U.; Hyeon, T. Designed fabrication of silica-based nanostructured particle systems for nanomedicine applications. Adv. Funct. Mater. 2008, 18, 3745–3758.

    Article  Google Scholar 

  54. Zhang, L.; Qiao, S. Z.; Jin, Y. G.; Chen, Z. G.; Gu, H. C.; Lu, G. Q. Magnetic hollow spheres of periodic mesoporous organosilica and Fe3O4 nanocrystals: Fabrication and structure control. Adv. Mater. 2008, 20, 805–809.

    Article  Google Scholar 

  55. Zhou, J. S.; Song, H. H.; Chen, X. H.; Zhi, L. J.; Yang, S. B.; Huo, J. P.; Yang, W. T. Carbon-encapsulated metal oxide hollow nanoparticles and metal oxide hollow nanoparticles: A general synthesis strategy and its application to lithiumion batteries. Chem. Mater. 2009, 21, 2935–2940.

    Article  Google Scholar 

  56. Chen, X. B.; Mao, S. S. Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chem. Rev. 2007, 107, 2891–2959.

    Article  Google Scholar 

  57. Rappsilber, J.; Mann, M.; Ishihama, Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat. Protoc. 2007, 2, 1896–1906.

    Article  Google Scholar 

  58. Reddy, B. M.; Khan, A. Recent advances on TiO2-ZrO2 mixed oxides as catalysts and catalyst upports. Catal. Rev.: Sci. Eng. 2005, 47, 257–296.

    Article  Google Scholar 

  59. Grätzel, M. Photoelectrochemical cells. Nature 2001, 414, 338–344.

    Article  Google Scholar 

  60. Chen, D. H.; Huang, F. Z.; Cheng, Y. B.; Caruso, R. A. Mesoporous anatase TiO2 beads with high surface areas and controllable pore sizes: A superior candidate for high-performance dye-sensitized solar cells. Adv. Mater. 2009, 21, 2206–2210.

    Article  Google Scholar 

  61. Li, L.; Tsung, C. K.; Yang, Z.; Stucky, G. D.; Sun, L. D.; Wang, J. F.; Yan, C. H. Rare-earth-doped nanocrystalline titania microspheres emitting luminescence via energy transfer. Adv. Mater. 2008, 20, 903–908.

    Article  Google Scholar 

  62. Sauvage, F.; Chen, D. H.; Comte, P.; Huang, F. Z.; Heiniger, L. P.; Cheng, Y. B.; Caruso, R. A.; Graetzel, M. Dye-sensitized solar cells employing a single film of mesoporous TiO2 beads achieve power conversion efficiencies over 10%. ACS Nano 2010, 4, 4420–4425.

    Article  Google Scholar 

  63. Huang, F. Z.; Chen, D. H.; Zhang, X. L.; Caruso, R. A.; Cheng, Y. B. Dual-function scattering layer of submicrometer-sized mesoporous TiO2 beads for high-efficiency dye-sensitized solar cells. Adv. Funct. Mater. 2010, 20, 1301–1305.

    Article  Google Scholar 

  64. Yang, D. J.; Zheng, Z. F.; Zhu, H. Y.; Liu, H. W.; Gao, X. P. Titanate nanofibers as intelligent absorbents for the removal of radioactive ions from water. Adv. Mater. 2008, 20, 2777–2781.

    Article  Google Scholar 

  65. Dondi, M.; Matteucci, F.; Cruciani, G. Zirconium titanate ceramic pigments: Crystal structure, optical spectroscopy and technological properties. J. Solid State Chem. 2006, 179, 233–246.

    Article  Google Scholar 

  66. Zou, H.; Lin, Y. S. Structural and surface chemical properties of sol-gel derived TiO2-ZrO2 oxides. Appl. Catal., A 2004, 265, 35–42.

    Article  Google Scholar 

  67. Manriquez, M. E.; Picquart, M.; Bokhimi, X.; López, T.; Quintana, P.; Coronado, J. M. X-ray diffraction, and Raman scattering study of nanostructured ZrO2-TiO2 oxides prepared by sol-gel. J. Nanosci. Nanotechnol. 2008, 8, 6623–6629.

    Google Scholar 

  68. Huang, Y.; Zheng, Z.; Ai, Z. H.; Zhang, L. Z.; Fan, X. X.; Zou, Z. G. Core-shell microspherical Ti1−x ZrxO2 solid solution photocatalysts directly from ultrasonic spray pyrolysis. J. Phys. Chem. B 2006, 110, 19323–19328.

    Article  Google Scholar 

  69. Yang, Y.; Liu, X.; Li, X. B.; Zhao, J.; Bai, S. Y.; Liu, J.; Yang, Q. H. A yolk-shell nanoreactor with a basic core and an acidic shell for cascade reactions. Angew. Chem. Int. Ed. 2012, 51, 9164–9168.

    Article  Google Scholar 

  70. Stöber, W.; Fink, A.; Bohn, E. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 1968, 26, 62–69.

    Article  Google Scholar 

  71. Arnal, P. M.; Weidenthaler, C.; Schüth, F. Highly monodisperse zirconia-coated silica spheres and zirconia/silica hollow spheres with remarkable textural properties. Chem. Mater. 2006, 18, 2733–2739.

    Article  Google Scholar 

  72. Pandey, A. D.; Güttel, R.; Leoni, M.; Schüth, F.; Weidenthaler, C. Influence of the microstructure of gold-zirconia yolk-shell catalysts on the CO oxidation activity. J. Phys. Chem. C 2010, 114, 19386–19394.

    Article  Google Scholar 

  73. Güttel, R.; Paul, M.; Schüth, F. Ex-post size control of high-temperature-stable yolk-shell Au@ZrO2 catalysts. Chem. Commun. 2010, 46, 895–897.

    Article  Google Scholar 

  74. Zhang, C. M.; Li, C. X.; Yang, J.; Cheng, Z. Y.; Hou, Z. Y.; Fan, Y.; Lin, J. Tunable luminescence in monodisperse zirconia spheres. Langmuir 2009, 25, 7078–7083.

    Article  Google Scholar 

  75. Liu, Z. H.; Fang, X. L.; Chen, C.; Zheng, N. F. Pd nanoparticles encapsulated in hollow mesoporous aluminosilica nanospheres as an efficient catalyst for multistep reactions and size-selective hydrogenation. Acta Chim. Sinica 2013, 71, 334–338.

    Article  Google Scholar 

  76. Busca, G. Acid catalysts in industrial hydrocarbon chemistry. Chem. Rev. 2007, 107, 5366–5410.

    Article  Google Scholar 

  77. Corma, A.; Garcia, H. Lewis acids: From conventional homogeneous to green homogeneous and heterogeneous catalysis. Chem. Rev. 2003, 103, 4307–4365.

    Article  Google Scholar 

  78. Ba, J. H.; Polleux, J.; Antonietti, M.; Niederberger, M. Non-aqueous synthesis of tin oxide nanocrystals and their assembly into ordered porous mesostructures. Adv. Mater. 2005, 17, 2509–2512.

    Article  Google Scholar 

  79. Yuan, Q.; Liu, Q.; Song, W. G.; Feng, W.; Pu, W. L.; Sun, L. D.; Zhang, Y. W.; Yan, C. H. Ordered mesoporous Ce1−x ZrxO2 solid solutions with crystalline walls. J. Am. Chem. Soc. 2007, 129, 6698–6699.

    Article  Google Scholar 

  80. Luca, V.; Bertram, W. K.; Widjaja, J.; Mitchell, D. R. G.; Griffith, C. S.; Drabarek, E. Synthesis of mesoporous zirconium titanates using alkycarboxylate surfactants and their transformation to dense ceramics. Microporous Mesoporous Mater. 2007, 103, 123–133.

    Article  Google Scholar 

  81. Lu, Z. D.; Gao, C. B.; Zhang, Q.; Chi, M. F.; Howe, J. Y.; Yin, Y. D. Direct assembly of hydrophobic nanoparticles to multifunctional structures. Nano Lett. 2011, 11, 3404–3412.

    Article  Google Scholar 

  82. Barthos, R.; Lónyi, F.; Onyestyák, G.; Valyon, J. An IR, FR, and TPD study on the acidity of H-ZSM-5, sulfated zirconia, and sulfated zirconia-titania using ammonia as the probe molecule. J. Phys. Chem. B 2000, 104, 7311–7319.

    Article  Google Scholar 

  83. Song, X. M.; Sayari, A. Sulfated zirconia-based strong solid-acid catalysts: Recent progress. Catal. Rev.: Sci. Eng. 1996, 38, 329–412.

    Article  Google Scholar 

  84. Sohn, J. R.; Kim, H. W. Catalytic and surface properties of ZrO2 modified with sulfur compounds. J. Mol. Catal. 1989, 52, 361–374.

    Article  Google Scholar 

  85. Lónyi, F.; Valyon, J.; Engelhardt, J.; Mizukami, F. Characterization and catalytic properties of sulfated ZrO2-TiO2 mixed oxides. J. Catal. 1996, 160, 279–289.

    Article  Google Scholar 

  86. Babou, F.; Coudurier, G.; Vedrine, J. C. Acidic properties of sulfated zirconia: An infrared spectroscopic study. J. Catal. 1995, 152, 341–349.

    Article  Google Scholar 

  87. Huang, Y. L.; Xu, S.; Lin, V. S. Y. Bifunctionalized mesoporous materials with site-separated Brønsted acids and bases: Catalyst for a two-step reaction sequence. Angew. Chem. Int. Ed. 2011, 50, 661–664.

    Article  Google Scholar 

  88. Zeidan, R. K.; Hwang, S. J.; Davis, M. E. Multifunctional heterogeneous catalysts: SBA-15-containing primary amines and sulfonic acids. Angew. Chem. Int. Ed. 2006, 45, 6332–6335.

    Article  Google Scholar 

  89. Shylesh, S.; Schünemann, V.; Thiel, W. R. Magnetically separable nanocatalysts: Bridges between homogeneous and heterogeneous catalysis. Angew. Chem. Int. Ed. 2010, 49, 3428–3459.

    Article  Google Scholar 

  90. Shiju, N. R.; Alberts, A. H.; Khalid, S.; Brown, D. R.; Rothenberg, G. Mesoporous silica with site-isolated amine and phosphotungstic acid groups: A solid catalyst with tunable antagonistic functions for one-pot tandem reactions. Angew. Chem. Int. Ed. 2011, 50, 9615–9619.

    Article  Google Scholar 

  91. Pan, W. T.; Miao, H. Q.; Xu, Y. J.; Navarro, E. C.; Tonra, J. R.; Corcoran, E.; Lahiji, A.; Kussie, P.; Kiselyov, A. S.; Wong, W. C. et al. 1-[4-(1H-benzoimidazol-2-yl)-phenyl]-3-[4-(1H-benzoimidazol-2-yl)-phenyl]-urea derivatives as small molecule heparanase inhibitors. Bioorg. Med. Chem. Lett. 2006, 16, 409–412.

    Article  Google Scholar 

  92. Bellina, F.; Calandri, C.; Cauteruccio, S.; Rossi, R. Efficient and highly regioselective direct C-2 arylation of azoles, including free (NH)-imidazole, -benzimidazole and -indole, with aryl halides. Tetrahedron 2007, 63, 1970–1980.

    Article  Google Scholar 

  93. Ayhan-Kılcıgil, G.; Altanlar, N. Synthesis and antimicrobial activities of some new benzimidazole derivatives. Il Farmaco 2003, 58, 1345–1350.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qisheng Huo.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guan, B., Wang, T., Zeng, S. et al. A versatile cooperative template-directed coating method to synthesize hollow and yolk-shell mesoporous zirconium titanium oxide nanospheres as catalytic reactors. Nano Res. 7, 246–262 (2014). https://doi.org/10.1007/s12274-013-0392-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-013-0392-9

Keywords

Navigation