Skip to main content
Log in

Photocatalytic CO2 reduction highly enhanced by oxygen vacancies on Pt-nanoparticle-dispersed gallium oxide

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Photocatalytic CO2 reduction on metal-oxide-based catalysts is promising for solving the energy and environmental crises faced by mankind. The oxygen vacancy (V o) on metal oxides is expected to be a key factor affecting the efficiency of photocatalytic CO2 reduction on metal-oxide-based catalysts. Yet, to date, the question of how an V o influences photocatalytic CO2 reduction is still unanswered. Herein, we report that, on V o-rich gallium oxide coated with Pt nanoparticles (V o-rich Pt/Ga2O3), CO2 is photocatalytically reduced to CO, with a highly enhanced CO evolution rate (21.0 μmol·h−1) compared to those on V o-poor Pt/Ga2O3 (3.9 μmol·h−1) and Pt/TiO2(P25) (6.7 μmol·h−1). We demonstrate that the V o leads to improved CO2 adsorption and separation of the photoinduced charges on Pt/Ga2O3, thus enhancing the photocatalytic activity of Pt/Ga2O3. Rational fabrication of an V o is thereby an attractive strategy for developing efficient catalysts for photocatalytic CO2 reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, H. T.; Zhang, X. Y.; MacFarlane, D. R. Carbon quantum dots/Cu2O heterostructures for solar-light-driven conversion of CO2 to methanol. Adv. Energy Mater. 2015, 5, 1401077.

    Google Scholar 

  2. Yin, G.; Nishikawa, M.; Nosaka, Y.; Srinivasan, N.; Atarashi, D.; Sakai, E.; Miyauchi, M. Photocatalytic carbon dioxide reduction by copper oxide nanocluster-grafted niobate nanosheets. ACS Nano 2015, 9, 111–2119.

    Article  Google Scholar 

  3. Habisreutinger, S. N.; Schmidt-Mende, L.; Stolarczyk, J. K. Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew. Chem., Int. Ed. 2013, 52, 372–7408.

    Article  Google Scholar 

  4. Singh, V.; Beltran, I. J. C.; Ribot, J. C.; Nagpal, P. Photocatalysis deconstructed: Design of a new selective catalyst for artificial photosynthesis. Nano Lett. 2014, 14, 97–603.

    Google Scholar 

  5. Tu, W. G.; Zhou, Y.; Zou, Z. G. Photocatalytic conversion of CO2 into renewable hydrocarbon fuels: State-of-the-art accomplishment, challenges, and prospects. Adv. Mater. 2014, 26, 607–4626.

    Article  Google Scholar 

  6. Yuan, L.; Xu, Y.-J. Photocatalytic conversion of CO2 into value-added and renewable fuels. Appl. Surf. Sci. 2015, 342, 54–167.

    Article  Google Scholar 

  7. Liu, S. Q.; Tang, Z.-R.; Sun, Y. G.; Colmenares, J. C.; Xu, Y.-J. One-dimension-based spatially ordered architectures for solar energy conversion. Chem. Soc. Rev. 2015, 44, 053–5075.

    Google Scholar 

  8. Zhang, N.; Yang, M.-Q.; Liu, S. Q.; Sun, Y. G.; Xu, Y.-J. Waltzing with the versatile platform of graphene to synthesize composite photocatalysts. Chem. Rev. 2015, 115, 0307–10377.

    Google Scholar 

  9. Pan, X. Y.; Yang, M.-Q.; Fu, X. Z.; Zhang, N.; Xu, Y.-J. Defective TiO2 with oxygen vacancies: Synthesis, properties and photocatalytic applications. Nanoscale 2013, 5, 601–3614.

    Google Scholar 

  10. Zhang, L.; Wang, W. Z.; Jiang, D.; Gao, E. P.; Sun, S. M. Photoreduction of CO2 on BiOCl nanoplates with the assistance of photoinduced oxygen vacancies. Nano Res. 2015, 8, 21–831.

    Google Scholar 

  11. Zhao, Y. F.; Chen, G. B.; Tong, B.; Zhou, C.; Waterhouse, G. I. N.; Wu, L.-Z.; Tung, C.-H.; Smith, L. J.; O’Hare, D.; Zhang, T. R. Defect-rich ultrathin ZnAl-layered double hydroxide nanosheets for efficient photoreduction of CO2 to CO with water. Adv. Mater. 2015, 27, 824–7831.

    Google Scholar 

  12. Shang, L.; Tong, B.; Yu, H. J.; Waterhouse, G. I. N.; Zhou, C.; Zhao, Y. F.; Tahir, M.; Wu, L.-Z.; Tung, C.-H.; Zhang, T. R. CdS nanoparticle-decorated Cd nanosheets for efficient visible light-driven photocatalytic hydrogen evolution. Adv. Energy Mater. 2016, 6, 1501241.

    Google Scholar 

  13. Zhao, Y. F.; Jia, X. D.; Waterhouse, G. I. N.; Wu, L.-Z.; Tung, C.-H.; O’Hare, D.; Zhang, T. R. Layered double hydroxide nanostructured photocatalysts for renewable energy production. Adv. Energy Mater., in press, DOI: 10.1002/aenm.201501974.

  14. Tan, L.-L.; Ong, W.-J.; Chai, S.-P.; Goh, B. T.; Mohamed, A. R. Visible-light-active oxygen-rich TiO2 decorated 2D graphene oxide with enhanced photocatalytic activity toward carbon dioxide reduction. Appl. Catal. B: Environ. 2015, 179, 60–170.

    Article  Google Scholar 

  15. Lin, J. L.; Pan, Z. M.; Wang, X. C. Photochemical reduction of CO2 by graphitic carbon nitride polymers. ACS Sustainable Chem. Eng. 2014, 2, 53–358.

    Google Scholar 

  16. Núñez, J.; de la Peña O'Shea, V. A.; Jana, P.; Coronado, J. M.; Serrano, D. P. Effect of copper on the performance of ZnO and ZnO1-x N x oxides as CO2 photoreduction catalysts. Catal. Today 2013, 209, 1–27.

    Article  Google Scholar 

  17. Teramura, K.; Tsuneoka, H.; Shishido, T.; Tanaka, T. Effect of H2 gas as a reductant on photoreduction of CO2 over a Ga2O3 photocatalyst. Chem. Phys. Lett., 2008, 467, 91–194.

    Article  Google Scholar 

  18. Tsuneoka, H.; Teramura, K.; Shishido, T.; Tanaka, T. Adsorbed species of CO2 and H2 on Ga2O3 for the photocatalytic reduction of CO2. J. Phys. Chem. C 2010, 114, 892–8898.

    Article  Google Scholar 

  19. Liu, L. J.; Gao, F.; Zhao, H. L.; Li, Y. Tailoring Cu valence and oxygen vacancy in Cu/TiO2 catalysts for enhanced CO2 photoreduction efficiency. Appl. Catal. B: Environ. 2013, 134–135, 349–358.

    Article  Google Scholar 

  20. Zhou, H.; Guo, J.; Li, P.; Fan, T.; Zhang, D.; Ye, J. Leafarchitectured 3D hierarchical artificial photosynthetic system of perovskite titanates towards CO2 photoreduction into hydrocarbon fuels. Sci. Rep. 2013, 3, 1667.

    Google Scholar 

  21. Xu, Y.; Schoonen, M. A. A. The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am. Mineral. 2000, 85, 43–556.

    Google Scholar 

  22. Navalón, S.; Dhakshinamoorthy, A.; Álvaro, M.; Garcia, H. Photocatalytic CO2 reduction using non-titanium metal oxides and sulfides. ChemSusChem 2013, 6, 62–577.

    Article  Google Scholar 

  23. Park, H.-A.; Choi, J. H.; Choi, K. M.; Lee, D. K.; Kang, J. K. Highly porous gallium oxide with a high CO2 affinity for the photocatalytic conversion of carbon dioxide into methane. J. Mater. Chem. 2012, 22, 304–5307.

    Google Scholar 

  24. Teramura, K.; Wang, Z.; Hosokawa, S.; Sakata, Y.; Tanaka, T. A doping technique that suppresses undesirable H2 evolution derived from overall water splitting in the highly selective photocatalytic conversion of CO2 in and by water. Chem.—Eur. J. 2014, 20, 906–9909.

    Article  Google Scholar 

  25. Kohno, Y.; Tanaka, T.; Funabiki, T.; Yoshida, S. Photoreduction of carbon dioxide with hydrogen over ZrO2. Chem. Commun. 1997, 841–842.

    Google Scholar 

  26. Kohno, Y.; Tanaka, T.; Funabiki, T.; Yoshida, S. Identification and reactivity of a surface intermediate in the photoreduction of CO2 with H2 over ZrO2. J. Chem. Soc. Faraday Trans. 1998, 94, 875–1880.

    Google Scholar 

  27. Kohno, Y.; Tanaka, T.; Funabiki, T.; Yoshida, S. Photoreduction of CO2 with H2 over ZrO2: A study on interaction of hydrogen with photoexcited CO2. Phys. Chem. Chem. Phys. 2000, 2, 635–2639.

    Google Scholar 

  28. Kohno, Y.; Ishikawa, H.; Tanaka, T.; Funabiki, T.; Yoshida, S. Photoreduction of carbon dioxide by hydrogen over magnesium oxide. Phys. Chem. Chem. Phys. 2001, 3, 108–1113.

    Google Scholar 

  29. Teramura, K.; Tanaka, T.; Ishikawa, H.; Kohno, Y.; Funabiki, T. Photocatalytic reduction of CO2 to CO in the presence of H2 or CH4 as a reductant over MgO. J. Phys. Chem. B 2004, 108, 46–354.

    Article  Google Scholar 

  30. Teramura, K.; Okuoka, S.-I.; Tsuneoka, H.; Shishido, T.; Tanaka, T. Photocatalytic reduction of CO2 using H2 as reductant over ATaO3 photocatalysts (A = Li, Na, K). Appl. Catal. B: Environ. 2010, 96, 65–568.

    Article  Google Scholar 

  31. Kresse, G.; Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 1169–11186.

    Article  Google Scholar 

  32. Kresse, G.; Hafner, J. Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 1993, 48, 3115–13118.

    Article  Google Scholar 

  33. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 7953–17979.

    Article  Google Scholar 

  34. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 758–1775.

    Google Scholar 

  35. Wang, X.; Xu, Q.; Li, M. R.; Shen, S.; Wang, X. L.; Wang, Y. C.; Feng, Z. C.; Shi, J. Y.; Han, H. X.; Li, C. Photocatalytic overall water splitting promoted by an a–ß phase junction on Ga2O3. Angew. Chem., Int. Ed. 2012, 51, 3089–13092.

    Google Scholar 

  36. Vincent, J.; Guillot-Noël, O.; Binet, L.; Aschehoug, P.; Le Du, Y.; Beaudoux, F.; Goldner, P. Electron paramagnetic resonance and optical spectroscopy of Er-doped ß-Ga2O3. J. Appl. Phys. 2008, 104, 033519.

    Article  Google Scholar 

  37. Lei, F. C.; Sun, Y. F.; Liu, K. T.; Gao, S.; Liang, L.; Pan, B. C.; Xie, Y. Oxygen vacancies confined in ultrathin indium oxide porous sheets for promoted visible-light water splitting. J. Am. Chem. Soc. 2014, 136, 826–6829.

    Article  Google Scholar 

  38. Yuan, Y. P.; Du, W. M.; Qian, X. F. Zn x Ga2O3+x (0 ≤ x ≤ 1) solid solution nanocrystals: Tunable composition and optical properties. J. Mater. Chem. 2012, 22, 53–659.

    Google Scholar 

  39. Pan, Y.-X.; Liu, C.-J.; Mei, D. H.; Ge, Q. F. Effects of hydration and oxygen vacancy on CO2 adsorption and activation on ß-Ga2O3(100). Langmuir 2010, 26, 551–5558.

    Google Scholar 

  40. Xu, Y.-J.; Li, J.-Q.; Zhang, Y.-F.; Chen, W.-K. The adsorption and dissociation of Cl2 on the MgO (001) surface with vacancies: Embedded cluster model study. J. Chem. Phys. 2004, 120, 753–8760.

    Google Scholar 

  41. Di Valentin, C.; Pacchioni, G. Spectroscopic properties of doped and defective semiconducting oxides from hybrid density functional calculations. Acc. Chem. Res. 2014, 47, 233–3241.

    Article  Google Scholar 

  42. Ogale, S. B. Dilute doping, defects, and ferromagnetism in metal oxide systems. Adv. Mater. 2010, 22, 125–3155.

    Article  Google Scholar 

  43. Song, C. P.; Wu, D. Q.; Zhang, F.; Liu, P.; Lu, Q. H.; Feng, X. L. Gemini surfactant assisted synthesis of two-dimensional metal nanoparticles/graphene composites. Chem. Commun. 2012, 48, 119–2121.

    Google Scholar 

  44. Pan, Y.-X.; Zhuang, H. Q.; Hong, J. D.; Fang, Z.; Liu, H.; Liu, B.; Huang, Y. Z.; Xu, R. Cadmium sulfide quantum dots supported on gallium and indium oxide for visiblelight- driven hydrogen evolution from water. ChemSusChem 2014, 7, 537–2544.

    Article  Google Scholar 

  45. Han, Y.; Liu, C.-J.; Ge, Q. F. Interaction of Pt clusters with the anatase TiO2(101) surface: A first principles study. J. Phys. Chem. B 2006, 110, 463–7472.

    Article  Google Scholar 

  46. Wang, S. B.; Yao, W. S.; Lin, J. L.; Ding, Z. X.; Wang, X. C. Cobalt imidazolate metal–organic frameworks photosplit CO2 under mild reaction conditions. Angew. Chem., Int. Ed. 2014, 53, 034–1038.

    Google Scholar 

  47. Iizuka, K.; Wato, T.; Miseki, Y.; Saito, K.; Kudo, A. Photocatalytic reduction of carbon dioxide over Ag cocatalystloaded ALa4Ti4O15 (A = Ca, Sr, and Ba) using water as a reducing reagent. J. Am. Chem. Soc. 2011, 133, 0863–20868.

    Article  Google Scholar 

  48. Pan, Y.-X.; Liu, C.-J.; Wiltowski, T. S.; Ge, Q. F. CO2 adsorption and activation over-Al2O3-supported transition metal dimers: A density functional study. Catal. Today 2009, 147, 8–76.

    Article  Google Scholar 

  49. Naldoni, A.; Allieta, M.; Santangelo, S.; Marelli, M.; Fabbri, F.; Cappelli, S.; Bianchi, C. L.; Psaro, R.; Dal Santo, V. Effect of nature and location of defects on bandgap narrowing in black TiO2 nanoparticles. J. Am. Chem. Soc. 2012, 134, 600–7603.

    Article  Google Scholar 

  50. Scanlon, D. O.; Dunnill, C. W.; Buckeridge, J.; Shevlin, S. A.; Logsdail, A. J.; Woodley, S. M.; Catlow, C. R. A.; Powell, M. J.; Palgrave, R. G., Parkin, I. P. et al. Band alignment of rutile and anatase TiO2. Nat. Mater. 2013, 12, 98–801.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yun-Xiang Pan, Jie Song or Shu-Hong Yu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, YX., Sun, ZQ., Cong, HP. et al. Photocatalytic CO2 reduction highly enhanced by oxygen vacancies on Pt-nanoparticle-dispersed gallium oxide. Nano Res. 9, 1689–1700 (2016). https://doi.org/10.1007/s12274-016-1063-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1063-4

Keywords

Navigation