Skip to main content
Log in

Evaluation of the antimicrobial potency of silver nanoparticles biosynthesized by using an endophytic fungus, Cryptosporiopsis ericae PS4

  • Microbial Physiology and Biochemistry
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

In the present study, silver nanoparticles (AgNPs) with an average particle size of 5.5 ± 3.1 nm were biosynthesized using an endophytic fungus Cryptosporiopsis ericae PS4 isolated from the ethno-medicinal plant Potentilla fulgens L. The nanoparticles were characterized using UV-visible spectrophotometer, transmission electron microscopy (TEM), scanning electron microscopy (SEM), selective area electron diffraction (SAED), and energy dispersive X-ray (EDX) spectroscopy analysis. Antimicrobial efficacy of the AgNPs was analyzed singly and in combination with the antibiotic/antifungal agent chloramphenicol/fluconazole, against five pathogenic microorganisms-Staphylococcus aureus MTCC96, Salmonella enteric MTCC735, Escherichia coli MTCC730, Enterococcus faecalis MTCC2729, and Candida albicans MTCC 183. The activity of AgNPs on the growth and morphology of the microorganisms was studied in solid and liquid growth media employing various susceptibility assays. These studies demonstrated that concentrations of AgNPs alone between 10 and 25 μM reduced the growth rates of the tested bacteria and fungus and revealed bactericidal/fungicidal activity of the AgNPs by delaying the exponential and stationary phases. Examination using SEM showed pits and ruptures in bacterial cells indicating fragmented cell membrane and severe cell damage in those cultures treated with AgNPs. These experimental findings suggest that the biosynthesized AgNPs may be a potential antimicrobial agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ahmad, A., Mukherjee, P., Senapati, S., Mandal, D., Khan, M.I., Kumar, R., and Sastry, M. 2003. Extracellular biosynthesis of AgNPs using the fungus Fusarium oxysporum. Coll. Surf. B: Biointerfaces 28, 313–318.

    Article  CAS  Google Scholar 

  • Bar, H., Bhui, D.K., Sahoo, G.P., Sarkar, P., De, S.P., and Misra, A. 2009. Green synthesis of AgNPs using latex of Jatropha curcas. Coll. Surf. A. 339, 134–139.

    Article  CAS  Google Scholar 

  • Begum, N.A., Mondal, S., Basu, S., Laskar, R.A., and Mandal, D. 2009. Biogenic synthesis of Au and Ag nanoparticles using aqueous solutions of black tea leaf extract. Coll. Surf. B: Biointerfaces 71, 113–118.

    Article  CAS  Google Scholar 

  • Bhagobaty, R.K. and Joshi, S.R. 2011. Metabolite profiling of endophytic fungal isolates of five ethno-pharmacologically important plants of Meghalaya, India. J. Metabolomics. Syst. Biol. 2, 20–31.

    CAS  Google Scholar 

  • Bhainsa, K.C. and D’Souza, S.K. 2006. Extracellular biosynthesis of AgNPs using the fungus Aspergillus fumigates. Coll. Surf. B: Biointerfaces 47, 160–164.

    Article  CAS  Google Scholar 

  • Birla, S., Tiwari, V.V., Gade, A.K., Ingle, A.P., Yadav, A.P., and Rai, M.K. 2009. Fabrication of AgNPs by Phoma glomerata and its combined effect against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Lett. Appl. Microbiol. 48, 173–179.

    Article  CAS  PubMed  Google Scholar 

  • Cho, K.H., Park, J.E., Osaka, T., and Park, S.G. 2005. The study of antimicrobial activity and preservative effects of nanosilver ingredient. Electrochim. Acta. 51, 956–960.

    Article  CAS  Google Scholar 

  • Dar, M.A., Ingle, A., and Rai, M. 2012. Enhanced antimicrobial activity of AgNPs synthesized by Cryphonectria sp. evaluated singly and in combination with antibiotics. Nanomedicine 9, 105–110.

    PubMed  Google Scholar 

  • Devi, L.S., Bareh, D.A., and Joshi, S.R. 2013. Studies on biosynthesis of antimicrobial AgNPs using endophytic fungi isolated from the ethno-medicinal plant Gloriosa superba L. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. doi:10.1007/s40011-013-0185-7.

    Google Scholar 

  • Devi, L.S. and Joshi, S.R. 2012. Antimicrobial and synergistic effects of AgNPs synthesized using soil fungi of high altitudes of Eastern Himalaya. Mycobiology 40, 27–34.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Esumi, K., Tano, T., Suzuk, A., Torigoe, K., and Meguro, K. 1990. Preparation and characterization of bimetallic palladium-copper colloids by thermal decomposition of their acetate compound in organic solvent. Chem. Mater. 2, 564–567.

    Article  CAS  Google Scholar 

  • Fayaz, A.M., Balaji, K., Girilal, M., Yadav, R., Kalaichelvan, P.T., and Venketesan, R. 2010. Biogenic synthesis of AgNPs and their synergistic effect with antibiotics: a study against Gram-positive and Gram-negative bacteria. Nanomedicine 6, 103–109.

    CAS  PubMed  Google Scholar 

  • Fortin, D. and Beveridge, T.J. 2000. Mechanistic routes towards biomineral surface development, pp. 294. In Baeuerlein, E. (ed.), Biomineralisation: From Biology to Biotechnology and Medical Application. Wiley-VCH, Verlag, Germany.

    Google Scholar 

  • Gade, A.K., Bonde, P., Ingle, A.P., Marcato, P.D., Durán, N., and Rai, M.K. 2008. Exploitation of Aspergillus niger for synthesis of AgNPs. J. Biobased Mater. Bioenergy 2, 243–247.

    Article  Google Scholar 

  • Gade, A.K., Ingle, A., Whiteley, C., and Rai, M. 2010. Mycogenic metal nanoparticles: progress and applications. Biotechnol. Lett. 32, 593–600.

    Article  CAS  PubMed  Google Scholar 

  • Goia, D.V. and Matijevic, N. 1998. Preparation of monodispersed metal particles. J. Chem. 22, 1203–1215.

    CAS  Google Scholar 

  • Gong, P., Li, H., He, X., Wang, K., Hu, J., Zhang, S., and Yang, X. 2007. Preparation and antibacterial activity of Fe3O4@Ag nanoparticles. Nanotechnology 18, 604–611.

    Google Scholar 

  • Gordon, O., Vig Slenters, T., Brunetto, P.S., Villaruz, A.E., Sturdevant, D.E., Otto, M., Landmann, R., and Fromm, K.M. 2010. Silver coordination polymers for prevention of implant infection: thiol interaction, impact on respiratory chain enzymes, and hydroxyl radical induction. Antimicrob. Agents Chemother. 54, 4208–4218.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Henglein, A. 2001. Reduction of Ag(CN)2 on silver and platinum colloidal nanoparticles. Langmuir 7, 2329–2333.

    Article  Google Scholar 

  • Huh, A.J. and Kwon, Y.J. 2011. “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J. Control. Release 156, 128–145.

    Article  CAS  PubMed  Google Scholar 

  • Kim, S.H., Lee, H.S., Ryu, D.S., Choi, S.J., and Lee, D.S. 2011. Antibacterial activity of silver-nanoparticles against Staphylococcus aureus and Escherichia coli. Kor. J. Microbiol. Biotechnol. 39, 77–85.

    CAS  Google Scholar 

  • Kora, A.J. and Arunachalam, J. 2011. Assessment of antibacterial activity of AgNPs on Pseudomonas aeruginosa and its mechanism of action. World J. Microbiol. Biotechnol. 27, 1209–1216.

    Article  CAS  Google Scholar 

  • Liu, X., Atwater, M., Wang, Q., and Huo, J. 2007. Extinction coefficient of gold nanoparticles with different sizes and different capping ligands. Coll. Surf. B: Biointerfaces 58, 3–7.

    Article  CAS  Google Scholar 

  • Malabadi, R.B., Mulgund, G.S., Meti, N.T., Nataraja, K., and Kumar, S.V. 2012. Antibacterial activity of AgNPs synthesized by using whole plant extract of Clitoria ternatea. Res. Pharm. 2, 10–21.

    CAS  Google Scholar 

  • Mayr-Harting, A., Hedges, A., and Berkeley, R. 1972. Methods for studying bactericides, pp. 74. Academic Press, New York, N.Y., USA.

    Google Scholar 

  • Mukherjee, P., Ahmad, A., Mandal, D., Senapati, S., Sainkar, S.R., Khan, M.I., Parischa, R., Ajayakumar, P.V., Alam, M., Kumar, R., and et al. 2001. Fungus-mediated synthesis of AgNPs and their immobilization in the mycelial matrix: A novel biological approach to nanoparticle synthesis. Nano. Lett. 1, 515–519.

    Article  CAS  Google Scholar 

  • Musarrat, J., Dwivedi, S., Singh, B.J., Al-Khedhairy, A.A., Azam, A., and Naqvi, A. 2010. Production of antimicrobial AgNPs in water extracts of the fungus Amylomyces rouxii strain KSU-09. Bioresour. Technol. 101, 8772–8776.

    Article  CAS  PubMed  Google Scholar 

  • Nalwade, A.R., Shinde, S.S., Bhor, G.L., Admuthe, N.B., Shinde, S.D., and Gawade, V.V. 2013. Rapid biosynthesis of AgNPs using bottle gourd fruit extract and potential application as bactericide. Res. Pharma. 3, 22–28.

    Google Scholar 

  • Owen, N.L. and Hundley, N. 2004. Endophytes — the chemical synthesizers inside plants. Sci. Prog. 87, 79–99.

    Article  CAS  PubMed  Google Scholar 

  • Panacek, A., Kvitek, L., Prucek, R., Kolar, M., Vecerova, R., and Pizurova, N. 2006. Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J. Phys. Chem. B 110, 16248–16253.

    CAS  PubMed  Google Scholar 

  • Pastoriza-Santos, L. and Liz-Marzan, M. 2002. Formation of PVPprotected metal nanoparticles in DMF. Langmuir 18, 2888–2893.

    Article  CAS  Google Scholar 

  • Qian, Y., Yu, H., He, D., Yang, H., Wang, W., Wan, X., and Wang, L. 2013. Biosynthesis of AgNPs by the endophytic fungus Epicoccum nigrum and their activity against pathogenic fungi. Bioprocess Biosyst. Eng. 36, 1613–1619.

    Article  CAS  PubMed  Google Scholar 

  • Rai, M., Yadav, A., and Gade, A. 2009. AgNPs as a new generation of antimicrobials. Biotechnol. Adv. 27, 76–83.

    Article  CAS  PubMed  Google Scholar 

  • Rodriquez-Sanchez, L., Blanco, M.C., and Lopez-Quintela, M.A. 2000. Electrochemical synthesis of AgNPs. J. Phys. Chem. B 104, 9683–9688.

    Google Scholar 

  • Singh, M., Sing, S., Prasad, S., and Gambhir, I.S. 2008. Nanotechnology in medicine and antibacterial effect of silver nanoparticles. Dig. J. Nanomater. Bios. 3, 115–122.

    Google Scholar 

  • Sondi, I. and Salopel-sondi, B. 2004. AgNPs as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J. Coll. Interface Sci. 275, 177–182.

    Article  CAS  Google Scholar 

  • Song, J.Y. and Kim, B.S. 2009. Rapid biological synthesis of AgNPs using plant leaf extract. Bioprocess Biosyst. Eng. 32, 79–84.

    Article  PubMed  Google Scholar 

  • Strobel, G.A. 2003. Endophytes as sources of bioactive products. Microb. Infect. 5, 535–544.

    Article  CAS  Google Scholar 

  • Strobel, G. and Daisy, B. 2003. Bioprospecting for microbial endophytes and their natural products. Microbiol. Mol. Biol. Rev. 67, 491–502.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Strobel, G., Yang, X., Sears, J., Kramer, R., Sidhu, R.S., and Hess, W.M. 1996. Taxol from Pestalotiopsis microspora, an endophytic fungus of Taxus wallachiana. Microbiology 142, 435–440.

    Article  CAS  PubMed  Google Scholar 

  • Taleb, A., Petit, C., and Pileni, M.P. 1997. Synthesis of highly monodisperse AgNPs from AOT reverse micelles: a way to 2D and 3D self organization. Chem. Mater. 9, 950–959.

    Article  CAS  Google Scholar 

  • Tan, R.X. and Zou, W.X. 2001. Endophytes: a rich source of functional metabolites. Nat. Prod. Rep. 18, 448–459.

    Article  CAS  PubMed  Google Scholar 

  • Vaidyanathan, R., Kalishwaralal, K., Gopalram, S., and Gurunathan, S. 2009. Nanosilver — The burgeoning therapeutic molecule and its green synthesis. Biotechnol. Adv. 27, 924–937.

    Article  CAS  PubMed  Google Scholar 

  • Verma, V.C., Kharwar, R.N., and Gange, A.C. 2010. Biosynthesis of antimicrobial AgNPs by the endophytic fungus Aspergillus clavatus. Nanomedicine (Lond) 5, 33–40.

    Article  CAS  Google Scholar 

  • White, T., Bruns, T., Lee, S., and Taylor, J. 1990. PCR Protocols, pp. 315–322. In Innis, M.A., Gelfand, D.H., Shinsky, J.J., and White, T.J. (ed.), A Guide to Methods and Applications. Academic Press, San Diego, USA.

    Google Scholar 

  • Wiley, B.J., Im, S.H., Li, Z.Y., McLellan, J., Siekkinen, A., and Xia, Y. 2006. Manoeuvring the surface plasmon resonance of silver nanostructures through shape-controlled synthesis. J. Phys. Chem. B 110, 15666–15675.

    CAS  PubMed  Google Scholar 

  • Zhu, J.J., Liu, S.W., Palchik, O., Koltypin, Y., and Gedanken, A. 2000. Shape-controlled synthesis of AgNPs by pulse sonoelctrochemical method. Langmuir 16, 6396–6399.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santa Ram Joshi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devi, L.S., Joshi, S.R. Evaluation of the antimicrobial potency of silver nanoparticles biosynthesized by using an endophytic fungus, Cryptosporiopsis ericae PS4. J Microbiol. 52, 667–674 (2014). https://doi.org/10.1007/s12275-014-4113-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-014-4113-1

Keywords

Navigation