Skip to main content
Erschienen in: International Journal of Material Forming 2/2008

01.07.2008 | Review

Carbon nanotubes for orthopaedic implants

verfasst von: Rose L. Spear, Ruth E. Cameron

Erschienen in: International Journal of Material Forming | Ausgabe 2/2008

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The physical and biological limitations of current orthopaedic implant materials are a major challenge for bone tissue engineering. Nanotechnology has introduced new materials and methods for meeting this challenge. The application of nanotechnology to engineering new bone substitutes finds a model in the nanoscale components of natural bone tissue. Carbon nanotubes are a macromolecular form of carbon with exceptional properties and similar morphology and dimensions to the nanoscale collagen fibers of natural bone tissue. Carbon nanotubes have been used in two main areas of bone tissue engineering: for structural and electrical enhancement of polymer and ceramic composites and for nanostructured coatings to improve the bioactivity of implant surfaces. By incorporating carbon nanotubes into the design and engineering of bone tissue substitutes, researchers have attempted to overcome limitations in the structural and biological compatibility of traditional orthopaedic implant materials.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Tencer AF, Johnson KD (1994) Factors Affecting the Strength of Bone. In: Biomechanics in Orthopedic Trauma: Bone Fracture and Fixation. Martin Dunitz, London, pp 18–20 Tencer AF, Johnson KD (1994) Factors Affecting the Strength of Bone. In: Biomechanics in Orthopedic Trauma: Bone Fracture and Fixation. Martin Dunitz, London, pp 18–20
2.
Zurück zum Zitat Webster TJ, Siegel RW, Bizios R (1999) Osteoblast adhesion on nanophase ceramics. Biomaterials 20:1221–1227CrossRef Webster TJ, Siegel RW, Bizios R (1999) Osteoblast adhesion on nanophase ceramics. Biomaterials 20:1221–1227CrossRef
3.
Zurück zum Zitat Webster TJ, Ejiofor JU (2004) Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo. Biomaterials 25:4731–4739CrossRef Webster TJ, Ejiofor JU (2004) Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo. Biomaterials 25:4731–4739CrossRef
4.
Zurück zum Zitat Webster TJ, Ergun C, Doremus RH et al (2000) Enhanced functions of osteoblasts on nanophase ceramics. Biomaterials 21:1803–1810CrossRef Webster TJ, Ergun C, Doremus RH et al (2000) Enhanced functions of osteoblasts on nanophase ceramics. Biomaterials 21:1803–1810CrossRef
5.
Zurück zum Zitat Webster TJ, Ergun C, Doremus RH et al (2001) Enhanced osteoclast-like cell functions on nanophase ceramics. Biomaterials 22:1327–1333CrossRef Webster TJ, Ergun C, Doremus RH et al (2001) Enhanced osteoclast-like cell functions on nanophase ceramics. Biomaterials 22:1327–1333CrossRef
6.
Zurück zum Zitat Vance RJ, Miller DC, Thapa A et al (2004) Decreased fibroblast cell density on chemically degraded poly-lactic-co-glycolic acid, polyurethane, and polycaprolactone. Biomaterials 25:2095–2103CrossRef Vance RJ, Miller DC, Thapa A et al (2004) Decreased fibroblast cell density on chemically degraded poly-lactic-co-glycolic acid, polyurethane, and polycaprolactone. Biomaterials 25:2095–2103CrossRef
7.
Zurück zum Zitat Gutwein LG, Tepper F, Webster TJ (2004) Increased osteoblast function on nanofibered alumina. 26th Annual American Ceramic Society Meeting, Cocoa Beach Gutwein LG, Tepper F, Webster TJ (2004) Increased osteoblast function on nanofibered alumina. 26th Annual American Ceramic Society Meeting, Cocoa Beach
8.
Zurück zum Zitat Singh R, Pantarotto D, Lacerda L et al (2006) Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. Proc Nat Acad Sci 103:3357–3362CrossRef Singh R, Pantarotto D, Lacerda L et al (2006) Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. Proc Nat Acad Sci 103:3357–3362CrossRef
9.
Zurück zum Zitat Polizu S, Savadogo O, Poulin P et al (2006) Applications of carbon nanotubes-based biomaterials in biomedical nanotechnology. J Nanosci Nanotechnol 6:1883–1904CrossRef Polizu S, Savadogo O, Poulin P et al (2006) Applications of carbon nanotubes-based biomaterials in biomedical nanotechnology. J Nanosci Nanotechnol 6:1883–1904CrossRef
10.
Zurück zum Zitat Wenrong Y, Pall T, Gooding JJ et al (2007) Carbon nanotubes for biological and biomedical applications. Nanotechnol (in press) 412001 Wenrong Y, Pall T, Gooding JJ et al (2007) Carbon nanotubes for biological and biomedical applications. Nanotechnol (in press) 412001
11.
Zurück zum Zitat Hutchison JL, Kiselev NA, Krinichnaya EP et al (2001) Double-walled carbon nanotubes fabricated by a hydrogen arc discharge method. Carbon 39:761–770CrossRef Hutchison JL, Kiselev NA, Krinichnaya EP et al (2001) Double-walled carbon nanotubes fabricated by a hydrogen arc discharge method. Carbon 39:761–770CrossRef
12.
Zurück zum Zitat Ruoff RS, Lorents DC (1995) Mechanical and thermal properties of carbon nanotubes. Carbon 33:925–930CrossRef Ruoff RS, Lorents DC (1995) Mechanical and thermal properties of carbon nanotubes. Carbon 33:925–930CrossRef
13.
Zurück zum Zitat Treacy MMJ, Ebbesen TW, Gibson JM (1996) Exceptionally high Young's modulus observed for individual carbon nanotubes. Nature 381:678–680CrossRef Treacy MMJ, Ebbesen TW, Gibson JM (1996) Exceptionally high Young's modulus observed for individual carbon nanotubes. Nature 381:678–680CrossRef
14.
Zurück zum Zitat Wong EW, Sheehan PE, Lieber CM (1997) Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes. Science 277:1971–1975CrossRef Wong EW, Sheehan PE, Lieber CM (1997) Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes. Science 277:1971–1975CrossRef
15.
Zurück zum Zitat Falvo MR, Clary GJ, Taylor RM et al (1997) Bending and buckling of carbon nanotubes under large strain. Nature 389:582–584CrossRef Falvo MR, Clary GJ, Taylor RM et al (1997) Bending and buckling of carbon nanotubes under large strain. Nature 389:582–584CrossRef
16.
Zurück zum Zitat Yu M-F, Lourie O, Dyer MJ et al (2000) Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287:637–640CrossRef Yu M-F, Lourie O, Dyer MJ et al (2000) Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287:637–640CrossRef
17.
Zurück zum Zitat Salvetat J-P, Kulik AJ, Bonard J-M et al (1999) Elastic modulus of ordered and disordered multiwalled carbon nanotubes. Adv Mater 11:161–165CrossRef Salvetat J-P, Kulik AJ, Bonard J-M et al (1999) Elastic modulus of ordered and disordered multiwalled carbon nanotubes. Adv Mater 11:161–165CrossRef
18.
Zurück zum Zitat MacDonald RA, Laurenzi BF, Viswanathan G et al (2005) Collagen-carbon nanotube composite materials as scaffolds in tissue engineering. J Biomed Mater Res A 74A:489–496CrossRef MacDonald RA, Laurenzi BF, Viswanathan G et al (2005) Collagen-carbon nanotube composite materials as scaffolds in tissue engineering. J Biomed Mater Res A 74A:489–496CrossRef
19.
Zurück zum Zitat Shi X, Sitharaman B, Pham QP et al (2007) Fabrication of porous ultra-short single-walled carbon nanotube nanocomposite scaffolds for bone tissue engineering. Biomaterials 28:4078–4090CrossRef Shi X, Sitharaman B, Pham QP et al (2007) Fabrication of porous ultra-short single-walled carbon nanotube nanocomposite scaffolds for bone tissue engineering. Biomaterials 28:4078–4090CrossRef
20.
Zurück zum Zitat Liu Y, Gilmore KJ, Chen J et al (2007) Bio-nanowebs based on Poly(styrene-B-styrene)(SIBS) containing single-wall carbon nanotubes. Chem Mater 19:2721–2723CrossRef Liu Y, Gilmore KJ, Chen J et al (2007) Bio-nanowebs based on Poly(styrene-B-styrene)(SIBS) containing single-wall carbon nanotubes. Chem Mater 19:2721–2723CrossRef
21.
Zurück zum Zitat Gilmore KJ, Moulton SE, Wallace GG (2007) Incorporation of carbon nanotubes into the biomedical polymer poly(styrene-[beta]-isobutylene-[beta]-styrene). Carbon 45:402–410CrossRef Gilmore KJ, Moulton SE, Wallace GG (2007) Incorporation of carbon nanotubes into the biomedical polymer poly(styrene-[beta]-isobutylene-[beta]-styrene). Carbon 45:402–410CrossRef
22.
Zurück zum Zitat Ayutsede J, Gandhi M, Sukigara S et al (2006) Carbon nanotube reinforced bombyx mori silk nanofibers by the electrospinning process. Biomacromolecules 7:208–214CrossRef Ayutsede J, Gandhi M, Sukigara S et al (2006) Carbon nanotube reinforced bombyx mori silk nanofibers by the electrospinning process. Biomacromolecules 7:208–214CrossRef
23.
Zurück zum Zitat Bacakova L, Grausova L, Vacik J et al (2007) Improved adhesion and growth of human osteoblast-like MG 63 cells on biomaterials modified with carbon nanoparticles. Diamond and Related Materials 16:2133–2140CrossRef Bacakova L, Grausova L, Vacik J et al (2007) Improved adhesion and growth of human osteoblast-like MG 63 cells on biomaterials modified with carbon nanoparticles. Diamond and Related Materials 16:2133–2140CrossRef
24.
Zurück zum Zitat Wang SF, Shen L, Zhang WD et al (2005) Preparation and mechanical properties of chitosan/carbon nanotubes composites. Biomacromolecules 6:3067–3072CrossRef Wang SF, Shen L, Zhang WD et al (2005) Preparation and mechanical properties of chitosan/carbon nanotubes composites. Biomacromolecules 6:3067–3072CrossRef
25.
Zurück zum Zitat Yao C, Cuihua G, Tainua Z et al (2005) Laser-surface-alloyed carbon nanotubes reinforced hydroxyapatite composite coatings. Appl Phys Lett 86:251905CrossRef Yao C, Cuihua G, Tainua Z et al (2005) Laser-surface-alloyed carbon nanotubes reinforced hydroxyapatite composite coatings. Appl Phys Lett 86:251905CrossRef
26.
Zurück zum Zitat Chen Y, Zhang YQ, Zhang TH et al (2006) Carbon nanotube reinforced hydroxyapatite composite coatings produced through laser surface alloying. Carbon 44:37–45CrossRef Chen Y, Zhang YQ, Zhang TH et al (2006) Carbon nanotube reinforced hydroxyapatite composite coatings produced through laser surface alloying. Carbon 44:37–45CrossRef
27.
Zurück zum Zitat Kealley C, Elcombe M, van Riessen A et al (2006) Development of carbon nanotube-reinforced hydroxyapatite bioceramics. Physica B: Condensed Matter 385–386:496–498CrossRef Kealley C, Elcombe M, van Riessen A et al (2006) Development of carbon nanotube-reinforced hydroxyapatite bioceramics. Physica B: Condensed Matter 385–386:496–498CrossRef
28.
Zurück zum Zitat Li GY, Wang PM, Zhao X (2005) Mechanical behavior and microstructure of cement composites incorporating surface-treated multi-walled carbon nanotubes. Carbon 43:1239–1245CrossRef Li GY, Wang PM, Zhao X (2005) Mechanical behavior and microstructure of cement composites incorporating surface-treated multi-walled carbon nanotubes. Carbon 43:1239–1245CrossRef
29.
Zurück zum Zitat Ma RZ, Wu J, Wei BQ et al (1998) Processing and properties of carbon nanotubes–nano-SiC ceramic. J Mater Sci 33:5243–5246CrossRef Ma RZ, Wu J, Wei BQ et al (1998) Processing and properties of carbon nanotubes–nano-SiC ceramic. J Mater Sci 33:5243–5246CrossRef
30.
Zurück zum Zitat White AA, Best SM, Kinloch IA (2007) Hydroxyapatite-carbon nanotube composites for biomedical applications: a review. Int J Appl Ceram Technol 4:1–13CrossRef White AA, Best SM, Kinloch IA (2007) Hydroxyapatite-carbon nanotube composites for biomedical applications: a review. Int J Appl Ceram Technol 4:1–13CrossRef
31.
Zurück zum Zitat Peigney A, Laurent C, Flahaut E et al (2000) Carbon nanotubes in novel ceramic matrix nanocomposites. Ceram Int 26:677–683CrossRef Peigney A, Laurent C, Flahaut E et al (2000) Carbon nanotubes in novel ceramic matrix nanocomposites. Ceram Int 26:677–683CrossRef
32.
Zurück zum Zitat An JW, You DH, Lim DS (2003) Tribological properties of hot-pressed alumina-CNT composites. Wear 255:677–681CrossRef An JW, You DH, Lim DS (2003) Tribological properties of hot-pressed alumina-CNT composites. Wear 255:677–681CrossRef
33.
Zurück zum Zitat Boccaccini AR, Chicatun F, Cho J et al (2007) Carbon Nanotube Coatings on Bioglass-Based Tissue Engineering Scaffolds. Adv Funct Mater 17:2815–2822CrossRef Boccaccini AR, Chicatun F, Cho J et al (2007) Carbon Nanotube Coatings on Bioglass-Based Tissue Engineering Scaffolds. Adv Funct Mater 17:2815–2822CrossRef
34.
Zurück zum Zitat Balani K, Anderson R, Laha T et al (2007) Plasma-sprayed carbon nanotube reinforced hydroxyapatite coatings and their interaction with human osteoblasts in vitro. Biomaterials 28:618–624CrossRef Balani K, Anderson R, Laha T et al (2007) Plasma-sprayed carbon nanotube reinforced hydroxyapatite coatings and their interaction with human osteoblasts in vitro. Biomaterials 28:618–624CrossRef
35.
Zurück zum Zitat Akasaka T, Watari F, Sato Y et al (2006) Apatite formation on carbon nanotubes. Mater Sci Eng C 26:675–678CrossRef Akasaka T, Watari F, Sato Y et al (2006) Apatite formation on carbon nanotubes. Mater Sci Eng C 26:675–678CrossRef
36.
Zurück zum Zitat Zhao B, Hu H, Mandal SK et al (2005) A bone mimic based on the self-assembly of hydroxyapatite on chemically functionalized single-walled carbon nanotubes. Chem Mater 17:3235–3241CrossRef Zhao B, Hu H, Mandal SK et al (2005) A bone mimic based on the self-assembly of hydroxyapatite on chemically functionalized single-walled carbon nanotubes. Chem Mater 17:3235–3241CrossRef
37.
Zurück zum Zitat Zanello LP, Zhao B, Hu H et al (2006) Bone cell proliferation on carbon nanotubes. Nano Lett 6:562–567CrossRef Zanello LP, Zhao B, Hu H et al (2006) Bone cell proliferation on carbon nanotubes. Nano Lett 6:562–567CrossRef
38.
Zurück zum Zitat Spear RL, Eder D, Windle AH et al (2008) The effect of functionalisation on carbon nanotube interactions with osteoblast-like cells. World Biomaterial Conference Proceedings, Amsterdam Spear RL, Eder D, Windle AH et al (2008) The effect of functionalisation on carbon nanotube interactions with osteoblast-like cells. World Biomaterial Conference Proceedings, Amsterdam
39.
Zurück zum Zitat Hirsch A (2006) Functionalization of fullerenes and carbon nanotubes. Physica Status Solidi (B) 243:3209–3212CrossRef Hirsch A (2006) Functionalization of fullerenes and carbon nanotubes. Physica Status Solidi (B) 243:3209–3212CrossRef
40.
Zurück zum Zitat Hirsch A (2002) Functionalization of single-walled carbon nanotubes. Angew Chem, Int Ed 41:1853–1859CrossRef Hirsch A (2002) Functionalization of single-walled carbon nanotubes. Angew Chem, Int Ed 41:1853–1859CrossRef
41.
Zurück zum Zitat Pantarotto D, Singh R, McCarthy D et al (2004) Functionalized Carbon Nanotubes for Plasmid DNA Gene Delivery. Angew Chem, Int Ed 43:5242–5246CrossRef Pantarotto D, Singh R, McCarthy D et al (2004) Functionalized Carbon Nanotubes for Plasmid DNA Gene Delivery. Angew Chem, Int Ed 43:5242–5246CrossRef
42.
Zurück zum Zitat Davis JJ, Green MLH, Allen O, Hill H et al (1998) The immobilisation of proteins in carbon nanotubes. Inorg Chim Acta 272:261–266CrossRef Davis JJ, Green MLH, Allen O, Hill H et al (1998) The immobilisation of proteins in carbon nanotubes. Inorg Chim Acta 272:261–266CrossRef
43.
Zurück zum Zitat Daniel S, Rao TP, Rao KS et al (2007) A review of DNA functionalized/grafted carbon nanotubes and their characterization. Sens Actuators, B, Chem 122:672–682CrossRef Daniel S, Rao TP, Rao KS et al (2007) A review of DNA functionalized/grafted carbon nanotubes and their characterization. Sens Actuators, B, Chem 122:672–682CrossRef
44.
Zurück zum Zitat Klumpp C, Kostarelos K, Prato M et al (2006) Functionalized carbon nanotubes as emerging nanovectors for the delivery of therapeutics. Biochim Biophys Acta (BBA)-Biomembranes 1758:404–412CrossRef Klumpp C, Kostarelos K, Prato M et al (2006) Functionalized carbon nanotubes as emerging nanovectors for the delivery of therapeutics. Biochim Biophys Acta (BBA)-Biomembranes 1758:404–412CrossRef
45.
Zurück zum Zitat Prato M, Kostarelos K, Bianco A (2008) Functionalized carbon nanotubes in drug design and discovery. Acc Chem Res 41:60–68CrossRef Prato M, Kostarelos K, Bianco A (2008) Functionalized carbon nanotubes in drug design and discovery. Acc Chem Res 41:60–68CrossRef
46.
Zurück zum Zitat Gabay T, Jakobs E, Ben-Jacob E et al (2005) Engineered self-organization of neural networks using carbon nanotube clusters. Physica A: Statistical and Theoretical Physics 350:611–621CrossRef Gabay T, Jakobs E, Ben-Jacob E et al (2005) Engineered self-organization of neural networks using carbon nanotube clusters. Physica A: Statistical and Theoretical Physics 350:611–621CrossRef
47.
Zurück zum Zitat Supronowicz PR, Ajayan PM, Ullmann KR et al (2002) Novel current-conducting composite substrates for exposing osteoblasts to alternating current stimulation. J Biomed Mater Res 59:499–506CrossRef Supronowicz PR, Ajayan PM, Ullmann KR et al (2002) Novel current-conducting composite substrates for exposing osteoblasts to alternating current stimulation. J Biomed Mater Res 59:499–506CrossRef
48.
Zurück zum Zitat Chen RJ, Bangsaruntip S, Drouvalakis KA et al (2003) Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors. PNAS 100:4984–4989CrossRef Chen RJ, Bangsaruntip S, Drouvalakis KA et al (2003) Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors. PNAS 100:4984–4989CrossRef
49.
Zurück zum Zitat Harrison BS, Atala A (2007) Carbon nanotube applications for tissue engineering. Biomaterials 28:344–353CrossRef Harrison BS, Atala A (2007) Carbon nanotube applications for tissue engineering. Biomaterials 28:344–353CrossRef
50.
Zurück zum Zitat Smart SK, Cassady AI, Lu GQ et al (2006) The biocompatibility of carbon nanotubes. Carbon 44:1034–1047CrossRef Smart SK, Cassady AI, Lu GQ et al (2006) The biocompatibility of carbon nanotubes. Carbon 44:1034–1047CrossRef
51.
Zurück zum Zitat Jia G, Wang H, Yan L et al (2005) Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environ Sci Technol 39:1378–1383CrossRef Jia G, Wang H, Yan L et al (2005) Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environ Sci Technol 39:1378–1383CrossRef
52.
Zurück zum Zitat Dumortier H, Lacotte S, Pastorin G et al (2006) Functionalized carbon nanotubes are non-cytotoxic and preserve the functionality of primary immune cells. Nano Lett 6:1522–1528CrossRef Dumortier H, Lacotte S, Pastorin G et al (2006) Functionalized carbon nanotubes are non-cytotoxic and preserve the functionality of primary immune cells. Nano Lett 6:1522–1528CrossRef
53.
Zurück zum Zitat De Nicola M, Gattia DM, Bellucci S et al (2007) Effect of different carbon nanotubes on cell viability and proliferation. J Phys-Condensed Matter 19:1–7 De Nicola M, Gattia DM, Bellucci S et al (2007) Effect of different carbon nanotubes on cell viability and proliferation. J Phys-Condensed Matter 19:1–7
54.
Zurück zum Zitat Bottini M, Bruckner S, Nika K et al (2006) Multi-walled carbon nanotubes induce T lymphocyte apoptosis. Toxicol Lett 160:121–126CrossRef Bottini M, Bruckner S, Nika K et al (2006) Multi-walled carbon nanotubes induce T lymphocyte apoptosis. Toxicol Lett 160:121–126CrossRef
Metadaten
Titel
Carbon nanotubes for orthopaedic implants
verfasst von
Rose L. Spear
Ruth E. Cameron
Publikationsdatum
01.07.2008
Verlag
Springer-Verlag
Erschienen in
International Journal of Material Forming / Ausgabe 2/2008
Print ISSN: 1960-6206
Elektronische ISSN: 1960-6214
DOI
https://doi.org/10.1007/s12289-008-0374-8

Weitere Artikel der Ausgabe 2/2008

International Journal of Material Forming 2/2008 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.