Skip to main content

Advertisement

Log in

Where is the brain inside the brain?

On why artificial neural networks should be developmental

  • Regular Research Paper
  • Published:
Memetic Computing Aims and scope Submit manuscript

Abstract

Biological brains are capable of general learning without supervision. This is learning across multiple domains without interference. Unlike artificial neural networks, in real brains, learned information is not purely encoded in real-valued weights but instead it resides in many neural aspects. Such aspects include, dendritic and axonal morphology, number and location of synapses, synaptic strengths and the internal state of neural components. Natural evolution has come up with extraordinary ‘programs’ for neurons that allow them to build learning systems through group activity. The neuron is the ‘brain within the brain’. We argue that evolving neural developmental programs which when executed continuously build, shape and adjust neural networks is a promising direction for future research. We discuss aspects of neuroscience that are important, and examine a model that incorporates many of these features that has been applied to a number of problems: wumpus world, checkers and maze solving.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) Molecular biology of the cell. Garland, New York

    Google Scholar 

  2. Astor JC, Adami C (2000) A development model for the evolution of artificial neural networks. Artif Life 6: 189–218

    Article  Google Scholar 

  3. Baum EB (1989) A proposal for more powerful learning algorithms. Neural Comput 1: 201–207

    Article  Google Scholar 

  4. Bliss TVP, Lomo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anesthetized rabbit following stimulation of the perforant path. J Physiol 232: 331–356

    Google Scholar 

  5. Boers EJW, Kuiper H (1992) Biological metaphors and the design of modular neural networks. Master’s thesis. Department of Computer Science and Department of Experimental and Theoretical Psychology, Leiden University

  6. Cangelosi A, Nolfi S, Parisi D (1994) Cell division and migration in a ‘genotype’ for neural networks. Netw Comput Neural Syst 5: 497–515

    Article  MATH  Google Scholar 

  7. Chellapilla K, Fogel DB (2001) Evolving an expert checkers playing program without using human expertise. IEEE Trans Evol Comput 5: 422–428

    Article  Google Scholar 

  8. Cooke SF, Bliss TVP (2006) Plasticity in the human central nervous system. Brain 129: 1659–1673

    Article  Google Scholar 

  9. Crick F (1989) The recent excitement about neural networks. Nature 337: 129–132

    Article  Google Scholar 

  10. Dalaert F, Beer R (1994) Towards an evolvable model of development for autonomous agent synthesis. In: Brooks R, Maes P (eds) Proceedings of the fourth conference on artificial life. MIT Press, Cambridge

  11. Debanne D, Daoudal G, Sourdet V, Russier M (2003) Brain plasticity and ion channels. J Physiol (Paris) 97: 403–414

    Article  Google Scholar 

  12. Dekaban AS, Sadowsky D (1978) Changes in brain weights during the span of human life. Ann Neurol 4: 345–356

    Article  Google Scholar 

  13. Dimand RW, Dimand MA (1996) A history of game theory: from the beginnings to 1945, vol 1. Routledge, Urbana

    Google Scholar 

  14. Downing KL (2007) Supplementing evolutionary developmental systems with abstract models of neurogenesis. In: Proceeding conference on genetic and evolutionary computation. ACM, New York, pp 990–996

  15. Fahlman SE, Lebiere C (1990) The cascade-correlation architecture. In: Touretzky DS (eds) Advances in neural information processing systems. Morgan Kaufmann, San Mateo

    Google Scholar 

  16. Federici D (2005) Evolving developing spiking neural networks. In: Proceedings of CEC 2005 IEEE congress on evolutionary computation, pp 543–550

  17. Federico Bermúdez-Rattoni, F (eds) (2007) Neural plasticity and memory from genes to brain imaging. CRC Press, Boca Raton

    Google Scholar 

  18. Fogel D (2002) Blondie24: playing at the edge of AI. Morgan Kaufmann, San Francisco

    Google Scholar 

  19. Frean M (1990) The upstart algorithm: a method for constructing and training feedforward neural networks. Neural Comput 2: 198–209

    Article  Google Scholar 

  20. French RM (1999) Catastrophic forgetting in connectionist networks: causes, consequences and solutions. Trends Cogn Sci 3(4): 128–135

    Article  MathSciNet  Google Scholar 

  21. Frey U, Morris R (2002) Synaptic tagging and long-term potentiation. Nature 385(6616): 533–536

    Article  Google Scholar 

  22. Gaiarsa J, Caillard O, Ben-Ari Y (2002) Long-term plasticity at GABAergic and glycinergic synapses: mechanisms and functional significance. Trends Neurosci 25(11): 564–570

    Article  Google Scholar 

  23. Gerstner W, Kistler W (2002) Spiking neuron models. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  24. Hebb D (1949) The organization of behavior. Wiley, New York

    Google Scholar 

  25. Hornby G, Lipson H, Pollack JB (2003) Generative representations for the automated design of modular physical robots. IEEE Trans Robot Autom 19: 703–719

    Article  Google Scholar 

  26. Hornby G, Pollack JB (2001) Body-brain co-evolution using L-systems as a generative encoding. In: Proceeding conference on genetic and evolutionary computation, pp 868–875

  27. Irving G, Donkers J, Uiterwijk J (2000) Solving kalah. Int Comput Games Assoc J 23(3): 139–147

    Google Scholar 

  28. Jakobi N (1995) Harnessing morphogenesis, cognitive science research paper 423, cogs. Tech. rep. University of Sussex

  29. Judd S (1988) On the complexity of loading shallow neural networks. J Complex 4: 177–192

    Article  MathSciNet  MATH  Google Scholar 

  30. Kandel ER, Schwartz JH, Jessell T (2000) Principles of neural science, 4th edn. McGraw-Hill, New York

    Google Scholar 

  31. Kendall G, Whitwell G (2001) An evolutionary approach for the tuning of a chess evaluation function using population dynamics. In: Proceedings of IEEE congress on evolutionary computation (CEC 2001), pp 995–1002

  32. Khan G, Miller J (2009) Evolution of cartesian genetic programs capable of learning. In: Proceeding conference on genetic and evolutionary computation (GECCO), pp 707–714

  33. Khan G, Miller J (2010) Solving mazes using an artificial developmental neuron. In: Proceeding conference on artificial life (ALIFE) XII. MIT Press, Cambridge, pp 241–248

  34. Khan G, Miller J, Halliday D (2007) Coevolution of intelligent agents using cartesian genetic programming. In: Proceeding conference on genetic and evolutionary computation (GECCO), pp 269–276

  35. Khan GM, Miller JF, Halliday DM (2009) In search of intelligent genes: the cartesian genetic programming computational neuron (CGPCN). In: Proceedings of IEEE congress on evolutionary computation. IEEE, Piscataway, pp 574–581

  36. Kitano H (1990) Designing neural networks using genetic algorithms with graph generation system. Complex Syst 4: 461–476

    MATH  Google Scholar 

  37. Kleim JA, Lussnig E, Schwartz ER, Comery TA, Greenough WT (1996) Synaptogenesis and fos expression in the motor cortex of the adult rat after motor skill learning. J Neurosci 16: 4529–4535

    Google Scholar 

  38. Kleim JA, Vij K, Ballard DH, Greenough WT (1997) Learning-dependent synaptic modifications in the cerebellar cortex of the adult rat persist for at least four weeks. J Neurosci 17: 717–721

    Google Scholar 

  39. Koch C (1999) Biophysics of computation: information processing in single neurons. Oxford University Press, Oxford

    Google Scholar 

  40. Koza J (1992) Genetic programming: on the programming of computers by means of natural selection. MIT Press, Cambridge

    MATH  Google Scholar 

  41. Kumar, S, Bentley, JP (eds) (2003) On growth, form and computers. Academic Press, London

    Google Scholar 

  42. Lindenmeyer A (1968) Mathematical models for cellular interaction in development. Parts I and II. J Theor Biol 18: 280–315

    Article  Google Scholar 

  43. Lubberts A, Miikkulainen R (2001) Co-evolving a go-playing neural network. In: Coevolution: turning adaptive algorithms upon themselves, Birds-of-a-Feather Workshop, genetic and evolutionary computation conference, p 6

  44. Maguire EA, Gadian DG, Johnsrude IS, Good CD, Ashburner J, Frackowiak RSJ, Frith CD (2000) Navigation-related structural change in the hippocampi of taxi drivers. PNAS 97: 4398–4403

    Article  Google Scholar 

  45. McCloskey M, Cohen N (1989) Catastrophic interference in connectionist networks: the sequential learning problem. Psychol Learn Motiv 24: 109–165

    Article  Google Scholar 

  46. McCulloch W, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys 5: 115–133

    Article  MathSciNet  MATH  Google Scholar 

  47. Miller JF, Thomson P (2000) Cartesian genetic programming. In: Proceedings of the third European conference on genetic programming. LNCS, vol. 1802. Springer, Berlin, pp 121–132

  48. Moriarty D, Miikulainen R (1995) Discovering complex othello strategies through evolutionary neural networks. Connect Sci 7(3–4): 195–209

    Google Scholar 

  49. Quartz S (1999) The constructivist brain. Trends Cogn Sci 3: 48–57

    Article  Google Scholar 

  50. Quartz S, Sejnowski T (1997) The neural basis of cognitive development: a constructivist manifesto. Behav Brain Sci 20: 537–556

    Google Scholar 

  51. Quinlan PT (1998) Structural change and development in real and artificial networks. Neural Netw 11: 577–599

    Article  Google Scholar 

  52. Quinlan, PT (eds) (2003) Connectionist models of development. Psychology Press, East Sussex

    Google Scholar 

  53. Ratcliff R (1990) Connectionist models of recognition memory: constraints imposed by learning and forgetting functions. Psychol Rev 97: 285–308

    Article  Google Scholar 

  54. Richards N, Moriarty D, Miikkulainen R (1998) Evolving neural networks to play go. In: Bäck T (ed) Proceedings of the seventh international conference on genetic algorithms. Morgan Kaufmann, San Francisco, CA, pp 768–775

  55. Roberts P, Bell C (2002) Spike-timing dependent synaptic plasticity in biological systems. Biol Cybern 87: 392–403

    Article  MATH  Google Scholar 

  56. Rose S (2003) The making of memory: from molecules to mind. Vintage, UK

    Google Scholar 

  57. Rust AG, Adams R, Bolouri H (2000) Evolutionary neural topiary: growing and sculpting artificial neurons to order. In: Proceedings of the 7th international conference on the simulation and synthesis of living systems (ALife VII). MIT Press, Cambridge, pp 146–150

  58. Samuel A (1959) Some studies in machine learning using the game of checkers. IBM J Res Dev 3(3): 210–219

    Article  MathSciNet  Google Scholar 

  59. Schaeffer J (1996) One jump ahead: challenging human supremacy in checkers. Springer, Berlin

    Google Scholar 

  60. Segal M (2005) Dendritic spines and long-term plasticity. Nat Rev Neurosci 6: 277–284

    Article  Google Scholar 

  61. Shannon C (1950) Programming a computer for playing chess. Phil Mag 41: 256–275

    MathSciNet  MATH  Google Scholar 

  62. Shepherd GM (1990) The synaptic organization of the brain. Oxford University Press, Oxford

    Google Scholar 

  63. Smythies J (2002) The dynamic neuron. MIT Press, Cambridge

    Google Scholar 

  64. Song S, Miller KD, Abbott LF (2000) Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. Nat Neurosci 3: 919–926

    Article  Google Scholar 

  65. Stanley KO (2007) Compositional pattern producing networks: a novel abstraction of development. Genetic Program Evolvable Mach 8: 131–162

    Article  MathSciNet  Google Scholar 

  66. Stanley KO, D’Ambrosio DB, Gauci J (2009) A hypercube-based encoding for evolving large-scale neural networks. Artif Life 15: 185–212

    Article  Google Scholar 

  67. Stanley KO, Miikkulainen R (2002) Competitive coevolution through evolutionary complexification. J Artif Intell Res 21: 63–100

    Google Scholar 

  68. Stanley KO, Miikkulainen R (2002) Evolving neural network through augmenting topologies. Evol Comput 10: 99–127

    Article  Google Scholar 

  69. Stanley KO, Miikkulainen R (2003) A taxonomy for artificial embryogeny. Artif Life 9(2): 93–130

    Article  Google Scholar 

  70. Stuart, G, Spruston, N, Häusser, M (eds) (2008) Dendrites. Oxford University Press, Oxford

    Google Scholar 

  71. Tada T, Sheng M (2006) Molecular mechanisms of dendritic spine morphogenesis. Curr Opin Neurobiol 16: 95–101

    Article  Google Scholar 

  72. Tramontin AD, Brenowitz E (2000) Seasonal plasticity in the adult brain. Trends Neurosci 23: 251–258

    Article  Google Scholar 

  73. Valverde F (1971) Rate and extent of recovery from dark rearing in the visual cortex of the mouse. Brain Res 33: 1–11

    Article  Google Scholar 

  74. Van Ooyen, A (eds) (2003) Modeling neural development. MIT Press, Cambridge

    Google Scholar 

  75. Van Ooyen A, Pelt J (1994) Activity-dependent outgrowth of neurons and overshoot phenomena in developing neural networks. J Theor Biol 167: 27–43

    Article  Google Scholar 

  76. Wee-Chong O, Yew-Jin L (2003) An investigation on piece differential information in co-evolution on games using kalah. In: Proceedings of the 2003 congress on evolutionary computation CEC2003. IEEE Press, Piscataway, pp 1632–1638

  77. Wolpert L, Smith J, Jessell T, Lawrence P, Robertson E, Meyerowitz E (2002) Principles of development, 3rd edn. Oxford University Press, Oxford

    Google Scholar 

  78. Yao X (1999) Evolving artificial neural networks. Proc IEEE 87(9): 1423–1447

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian F. Miller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, J.F., Khan, G.M. Where is the brain inside the brain?. Memetic Comp. 3, 217–228 (2011). https://doi.org/10.1007/s12293-011-0062-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12293-011-0062-y

Keywords

Navigation