Skip to main content

Advertisement

Log in

Citrus biotechnology: Achievements, limitations and future directions

  • Review Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

Citrus is one of the most important commercial and nutritional fruit crops in the world, hence it needs to be improved to cater to the diverse needs of consumers and crop breeders. Genetic manipulation through conventional techniques in this genus is invariably a difficult task for plant breeders as it poses various biological limitations comprising long juvenile period, high heterozygosity, sexual incompatibility, nucellar polyembryony and large plant size that greatly hinder cultivar improvement. Hence, several attempts were made to improve Citrus sps. by using various in vitro techniques. Citrus sps are widely known for their recalcitrance to transformation and subsequent rooting, but constant research has led to the establishment of improved protocols to ensure the production of uniformly transformed plants, albeit with relatively low efficiency, depending upon the genotype. Genetic modification through Agrobacterium-mediated transformation has emerged as an important tool for introducing agronomically important genes into Citrus sps. Somatic hybridization has been applied to overcome self and cross-incompatibility barriers and generated inter-specific and inter-generic hybrids. Encouraging results have been achieved through transgenics for resistance against viruses and bacteria, thereby augmenting the yield and quality of the fruit. Now, when major transformation and regeneration protocols have sufficiently been standardized for important cultivars, ongoing citrus research focuses mainly on incorporating such genes in citrus genotypes that can combat different biotic and abiotic stresses. This review summarizes the advances made so far in Citrus biotechnology, and suggests some future directions of research in this fruit crop.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aguilar ME, Engelmann F and Michaux-Ferrière N (1993). Cryopreservation of cell suspensions of Citrus deliciosa Tan. an histological study. Cryo-Letters, 14: 217–228.

    Google Scholar 

  • Ahmad M and Mirza B (2005). An efficient protocol for transient transformation of intact fruit and transgene expression in Citrus. Plant Mol. Biol. Rep., 23: 419a–419k.

    Article  Google Scholar 

  • Al-khayri JM and Al-bahrany AM (2001). In vitro micropropagation of Citrus aurantifolia (lime). Curr. Sci., 18: 1242–1246.

    Google Scholar 

  • Ali S and Mirza B (2006). Micropropagation of rough lemon (Citrus jambhiri Lush.): Effect of explant type and hormone concentration. Acta Bot. Croat. 65, 137–146.

    CAS  Google Scholar 

  • Almeida WAB de, Mourão Filho F de AA, Mendes BMJ and Rodriguez APM (2002). In vitro organogenesis optimization and plantlet regeneration in Citrus sinensis and C. limonia. Sci. Agr., 59: 35–40.

    Google Scholar 

  • Almeida WAB de, Mourão Filho F de AA, Mendes BMJ, Pavan A and Rodriguez APM (2003). Agrobacteriummediated transformation of Citrus sinensis and C. limonia epicotyl segments. Sci. Agr., 60: 23–29.

    Google Scholar 

  • Altpeter F, Vasil V, Srivastava V, Stoger E and Vasil IK (1996). Accelerated production of transgenic wheat (Triticum aestivum L.) plants. Plant Cell Rep., 16: 12–17.

    Article  CAS  Google Scholar 

  • Ananthakrishnan G, Orbovic V, Pasquali G, Calovic M and Grosser JW (2007). Transfer of citrus tristeza virus (CTV)-derived resistance candidate sequences to four grapefruit cultivars through Agrobacterium-mediated transformation. In Vitro Cell. Dev. Biol. Plant, 43: 593–601.

    Article  CAS  Google Scholar 

  • Azevedo FA, Mourão Filho F, Schinor EH, Paoli LG de, Mendes BMJ, Harakava R, Gabriel DW and Lee RF (2006). GUS gene expression driven by a citrus promoter in transgenic tobacco and ‘Valencia’ sweet orange. Pesq. Agropec. Bras., 41: 1623–1628.

    Article  Google Scholar 

  • Azevedo FA, Mourão Filho F, Mendes BMJ, Almeida WAB, Schinor EH, Pio R, Barbosa JM, Gonzalez SG, Carrer H and Lam E (2006). Genetic transformation of Rangpur lime (Citrus limonia Osbeck) with the bO (bacterioopsin) gene and its initial evaluation for Phytophthora nicotianae resistance. Plant Mol. Biol. Rep. 24: 185–196.

    Article  CAS  Google Scholar 

  • Ballester A, Cervera M and Pena L (2007). Efficient production of transgenic citrus plants using isopentenyl transferase positive selection and removal of the marker gene by site-specific recombination. Plant Cell Rep., 26: 39–45.

    Article  PubMed  CAS  Google Scholar 

  • Ballester A, Cervera M and Pena L (2008). Evaluation of selection strategies alternative to nptII in genetic transformation of citrus. Plant Cell Rep., 27: 1005–1015.

    Article  PubMed  CAS  Google Scholar 

  • Barandiaran X, Pietro AD and Martín J (1998). Biolistic transfer and expression of a uidA reporter gene in different tissues of Allium sativum L. Plant Cell Rep., 17: 737–741.

    Article  CAS  Google Scholar 

  • Bar-Joseph M, Marcus R and Lee RF (1989). The continuous challenge of citrus tristeza virus control. Annu. Rev. Phytopathol., 27: 291–316.

    Article  Google Scholar 

  • Batuman O, Mawassi M, Dawson WO and Joseph M Bar (2008). Transgenic pathogen derived resistance is difficult to obtain for citrus tristeza virus and probably also for other closteroviridae. Indian J. Virol., 19. (Abstract)

  • Baulcombe DC (1996). Mechanisms of pathogen-derived resistance to viruses in transgenic plants. Plant Cell 8: 1833–1844.

    Article  PubMed  CAS  Google Scholar 

  • Bausher MG, Singh ND, Lee SB, Jansen RK and Daniell H (2006). The complete chloroplast genome sequence of Citrus sinensis (L.) Osbeck var ‘Ridge Pineapple: organization and phylogenetic relationships to other angiosperms. BMC Plant Biol., 6: 1–11.

    Article  CAS  Google Scholar 

  • Ben-Hayyim G and Neumann H (1983). Stimulatory effect of glycerol on growth and somatic embryogenesis in Citrus callus cultures. Z. Pflanzenphysiol., 110: 331–333.

    CAS  Google Scholar 

  • Berg van den M and van den Berg M (1999). Measures to reduce Citrus psylla and the spreading of the greening disease. Neltropica Bull., 20: 5–6.

    Google Scholar 

  • Berthomieu P, Beclin C, Charlot F, Dore C and Jouanin L (1994). Routine transformation of rapid cycling cabbage (Brassica oleracea) molecular evidence for regeneration of chimeras. Plant Sci., 96: 223–235.

    Article  CAS  Google Scholar 

  • Bespalhok FJC, Kobayashi AK, Luiz FPP, Hissano Z and Vieira LGE (2001). In vitro adventitious shoot regeneration from sweet orange (Citrus sinensis) using thin epicotyl sections. Crop Breed. Appl. Biotech., 1: 27–34.

    Google Scholar 

  • Bespalhok FJC, Kobayashi AK, Pereira LFP, Galvao RM and Vieira LGE (2003). Transient gene gxpression of aglucuronidase in citrus thin epicotyl transversal sections using particle bombardment. Brazilian Arc. Biol. Technol., 46: 1–6.

    Google Scholar 

  • Birch RG (1997). Plant transformation: problems and strategies for practical application. Ann. Rev. Plant Physiol. Plant Mol. Biol., 48: 297–326.

    Article  CAS  Google Scholar 

  • Bond JE and Roose ML (1998). Agrobacterium-mediated transformation of the commercially important citrus cultivar Washington navel orange. Plant Cell Rep., 18: 229–234.

    Article  CAS  Google Scholar 

  • Bordon Y, Guardiola JL and Garcia-Luis A (2000). Genotype affects the morphogenic response in vitro of epicotyl segments of Citrus rootstocks. Ann. Bot., 86: 159–166.

    Article  Google Scholar 

  • Button J (1978). The effect of some carbohydrates on the growth and organization of Citrus ovular callus. Z. Pflanzenphysiol., 88: 61–68.

    CAS  Google Scholar 

  • Cariami F (2005). Somatic embryogenesis protocol: Citrus. Protocol for Somatic Embryogenesis in Woody Plants (Jain SM and Gupta PK, Eds.), Springer, The Netherlands, pp. 321–343.

    Chapter  Google Scholar 

  • Castle WS, Tucker DPH, Krezdorn AH and Youtsey CO (1993). Rootstocks for Florida Citrus: rootstock selection, the first step to success. 2nd ed. Gainesville: University of Florida, 1993, p92.

    Google Scholar 

  • Cervera M, López MM, Navarro L and Peña L (1998a). Virulence and supervirulence of Agrobacterium tumefaciens in woody fruit plants. Physiol. Mol. Plant. Pathol., 52: 67–78.

    Article  Google Scholar 

  • Cervera M, Juárez J, Navarro A, Pina JA, Duran-Vila N, Navarro L and Peña L (1998b). Genetic transformation and regeneration of mature tissues of woody fruit plants bypassing the juvenile stage. Transgenic Res., 7: 51–59.

    Article  CAS  Google Scholar 

  • Cervera M, Pina JA, Juarez J, Navarro L and Peña L (1998c). Agrobacterium-mediated transformation of citrange: factors affecting transformation and regeneration. Plant Cell Rep., 18: 271–278.

    Article  CAS  Google Scholar 

  • Cervera M, Ortega C, Navarro A, Navarro L and Peña L (2000). Generation of transgenic citrus plants with the tolerance-to-salinity gene HAL2 from yeast. J. Hortic. Sci. Biotechnol., 75: 26–30.

    CAS  Google Scholar 

  • Cervera M, Juarez J, Navarro L and Peña L (2004). Genetic transformation of mature citrus plants. Meth. Mol. Biol., 286: 177–187.

    Google Scholar 

  • Cevik B, Lee RF and Niblett CL (2006). Genetic transformation of Citrus paradisi with antisense and untranslatable RNA-dependent RNA polymerase genes of citrus tristeza closterovirus. Turk. J. Agric. 30: 173–182.

    CAS  Google Scholar 

  • Chavez-Vela NA, Chavez-Ortiz LI and Pérez-Molphe-Balch E (2003). Genetic transformation of sour orange using Agrobacterium rhizogenes. Agrociencia, 37: 629–639.

    Google Scholar 

  • Chen XY and Liao CQ (1982). Observation of biological characteristics of Citrus psyllid, Diaphorina citri and its relationship with citrus huanglongbing (in Chinese). China Citrus, 4: 14–15.

    Google Scholar 

  • Christou P (1990). Morphological description of transgenic soybean chimeras created by the delivery, integration and expression of foreign DNA using electric discharge particle acceleration. Ann. Bot., 66: 379–386.

    CAS  Google Scholar 

  • Christou P and Ford TL (1995). Recovery of chimeric rice plants from dry seed using electric discharge particle acceleration. Ann. Bot., 75: 449–454.

    Article  Google Scholar 

  • Costa AS and Müller GW (1980). Tristeza control by cross protection: a US-Brazil cooperative success. Plant Dis., 64: 538–541.

    Google Scholar 

  • Costa MGC, Otoni WC and Moore GC (2002). An evaluation of factors affecting the effciency of Agrobacteriummediated transformation of Citrus paradisi (Macf.) and production of transgenic plants containing carotenoid biosynthetic genes. Plant Cell Rep., 21: 365–373.

    Article  CAS  Google Scholar 

  • Domínguez A, Guerri J, Cambra M, Navarro L, Moreno P and Peña L (2000). Efficient production of citrus transgenic plants expressing the coat protein gene of Citrus Tristeza Virus. Plant Cell Rep., 19: 427–433.

    Article  Google Scholar 

  • Domínguez A, Fagoaga C, Navarro L, Moreno P and Peña L (2002). Regeneration of transgenic citrus plants under non selective conditions results in high frequency recovery of plants with silenced transgenes. Mol. Genet. Genom., 267: 544–556.

    Article  CAS  Google Scholar 

  • Domínguez A, Cervera M, Pérez RM, Romero J, Fagoaga C, Cubero J, López MM, Juárez JA, Navarro L and Peña L (2004). Characterisation of regenerants obtained under selective conditions after Agrobacterium-mediated transformation of citrus explants reveals production of silenced and chimeric plants at unexpected high frequencies. Mol. Breed., 14: 171–183.

    Article  Google Scholar 

  • Duan Y, Liu X, Fan J, Li D, Wu R and Guo W (2007). Multiple shoot induction from seedling epicotyls and transgenic citrus plant regeneration containing the green fluorescent protein gene. Bot. Studies, 48: 165–171.

    Google Scholar 

  • Duran-Vila N, Ortega V and Navarro L (1988). Morphogenesis and tissue cultures of three citrus species. Plant Cell Tiss. Org. Cult., 16: 123–133.

    Article  Google Scholar 

  • Duran-Vila N, Gogorcena Y, Ortega V, Ortiz J and Navarro L (1992). Morphogenesis and tissue culture of sweet orange (Citrus sinensis (L.) Osb.): effect of temperature and photosynthetic radiation. Plant Cell Tiss. Org. Cult., 29: 11–18.

    Article  Google Scholar 

  • Endo T, Shimada T, Fuji H, Kobayashi Y, Araki T and Omura M (2005). Ectopic expression of an FT homolog from Citrus confers an early flowering phenotype on trifoliate orange (Poncirus trifoliata L. Raf.). Trans. Res., 14: 703–712.

    Article  CAS  Google Scholar 

  • FAO (2001). http://apps.fao.org/lim500/nph-wrap.pl.

  • Febres VJ, Niblett CL, Lee RF and Moore GA (2003). Characterization of grapefruit plants (Citrus paradisi Macf.) transformed with citrus tristeza closterovirus genes. Plant Cell Rep., 21: 421–428.

    PubMed  CAS  Google Scholar 

  • Ferrer E, Linares C and González JM (2000). Efficient transient expression of the β-glucuronidase reporter gene in garlic (Allium sativum L.). Agronomie, 20: 869–874.

    Article  Google Scholar 

  • Fillatti JJ, Kiser J, Rose R and Comai L (1987). Efficient transfer of a glyphosate tolerance gene into tomato using a binary Agrobacterium tumefaciens vector. Biotechnology, 5: 726–730.

    Article  CAS  Google Scholar 

  • Fillatti JJ, Sellmer J, McCown B, Haissig B and Comai L (1987). Agrobacterium-mediated transformation and regeneration of Populus. Mol. Gen. Genet., 206: 192–199.

    Article  CAS  Google Scholar 

  • Fleming GH, Olivares-Fuster O, Del-Bosco S and Grosser JW (2000). An alternative method for the genetic transformation of sweet orange. In Vitro Cell Dev. Biol. Plant., 36: 450–455.

    Article  CAS  Google Scholar 

  • Garcý’a-Luis A, Bordo’n Y, Moreira-Dias JM, Molina RV and Guardiola JL (1999). Explant orientation and polarity determine the morphogenic response of epicotyl segments of Troyer citrange. Ann. Bot., 84: 715–723

    Article  Google Scholar 

  • Garcý’a-Luis A, Molina RV, Varona V, Castello S and Guardiola JL (2006). The influence of explant orientation and contact with the medium on the pathway of shoot regeneration in vitro in epicotyl cuttings of Troyer citrange. Plant Cell Tiss. Org. Cult., 85: 137–144.

    Article  Google Scholar 

  • Gentile A, Monticelli S and Damiano C (2002). Adventitious shoot regeneration in peach [Prunus persica (L.) Batsch]. Plant Cell Rep., 20: 1011–1016.

    Article  CAS  Google Scholar 

  • Ghorbel R, Navarro L and Dura’n-Vila N (1998). Morphogenesis and regeneration of whole plants of grapefruit (Citrus paradisi), sour orange (C. aurantium) and alemow (C. macrophylla). J. Hort. Sci. Biotechnol., 73: 323–327.

    Google Scholar 

  • Ghorbel R, Juárez J, Navarro L and Peña L (1999). Green fluorescent protein as a screenable marker to increase the efficiency of generating transgenic woody fruit plants. Theor. Appl. Genet., 99: 350–358.

    Article  Google Scholar 

  • Ghorbel R, Domínguez A, Navarro L and Peña L (2000). High efficiency genetic transformation of sour orange Citrus aurantium L. and production of transgenic trees containing the coat protein gene of Citrus Tristeza Virus. Tree Physiol., 20: 1183–1189.

    PubMed  Google Scholar 

  • Gill MIS, Singh Z and Agrez V (2004). Factors affecting Agrobacterium-mediated transformation in fruit and nut crops-An overview. Food, Agric. Environ., 2: 327–347.

    CAS  Google Scholar 

  • Giri CC, Shyamkumar B and Anjaneyulu C (2004). Progress in tissue culture, genetic transformation and applications in biotechnology to trees: an overview. Trees, 18: 115–135.

    Google Scholar 

  • Gloria FJM, Mourao Filho, Camargo LEA and Mendes MEJ (2000). Caipira sweet orange + Rangpur Lime: A potential somatic hybrid to be used as rootstock in the Brazilian citrus industry. Genet. Mol. Biol., 23: 661–669.

    Google Scholar 

  • Goh CJ, Sim GE, Morales CL and Loh CS (1995). Plantlet regeneration through different morphogenic pathways in pommelo tissue culture. Plant Cell Tiss. Org. Cult., 43: 301–303.

    Google Scholar 

  • Gray DJ and Finer JJ (1993). Development and operation of five particle guns for introduction of DNA into plant cells. Plant Cell Tiss. Org. Cult., 33: 219.

    Article  Google Scholar 

  • Grosser JW, Gmitter FG Jr and Chandler JL (1988). Intergeneric somatic hybrid plants of Citrus sinensis cv. Hamlin and Poncirus trifoliata cv. Flying Dragon. Plant Cell Rep., 7: 5–8.

    Article  Google Scholar 

  • Grosser JW, Garnsey SM and Halliday C (1996). Assay of sour orange somatic hybrid rootstocks for quick decline disease caused by citrus tristeza virus. Proc. Int. Soc. Citricult., 1: 353–356.

    Google Scholar 

  • Grosser JW, Jiang J, Louzada ES, Chandler JL and Gmitter FG Jr (1998). Somatic hybridization, an integral component of citrus cultivar improvement: II. Rootstock improvement. HortSci., 33: 1060–1061.

    Google Scholar 

  • Grosser JW, Ollitrault P and Olivares-Fuster O (2000). Somatic hybridization in citrus: An effective tool to facilitate variety improvement. In Vitro Cell. Dev. Biol. — Plant, 36: 434–449.

    Article  Google Scholar 

  • Guo WW and Deng XX (1998). Somatic hybrid plantlets regeneration between Citrus and its wild relative, via protoplast fusion. Plant Cell Rep., 18: 297–300.

    Article  CAS  Google Scholar 

  • Guo WW and Deng XX (2001). Wide somatic hybrids of Citrus with its related genera and their potential in genetic improvement. Euphytica, 118: 175–183.

    Article  CAS  Google Scholar 

  • Guo WW, Prasad D, Cheng YJ, Serrano P, Deng XX and Grosser JW (2004). Targeted cybridization in citrus: transfer of Satsuma cytoplasm to seedy cultivars for potential seedlessness. Plant Cell Rep., 22: 752–758.

    Article  PubMed  CAS  Google Scholar 

  • Guo WW, Duan YX, Olivares-Fuster O, Wu ZC, Arias CR, Burns JK and Grosser JW (2005). Protoplast transformation and regeneration of transgenic Valencia sweet orange plants containing a juice quality related pectin methylesterase gene. Plant Cell Rep., 24: 482–486.

    Article  PubMed  CAS  Google Scholar 

  • Guo WW, Duan YX, Li DL, Liu X, Tan B, Cai XD, Grosser JW and Deng XX (2006). Citrus genetic transformation with interest target genes and further uses of transgenic lines in somatic fusion. Acta Hort. 773: XXVII International Horticultural Congress.

    Google Scholar 

  • Gutiérrez MA, Luth DE and Moore GA (1997). Factors affecting Agrobacterium-mediated transformation in Citrus and production of sour orange (Citrus aurantium L.) plants expressing the coat protein gene of citrus tristeza virus. Plant Cell Rep., 16: 745–753.

    Article  Google Scholar 

  • Hara M, Fujinaga M and Kuboi T (2004). Radical scavenging activity and oxidative modification of citrus dehydrin. Plant Physiol. Biotechnol., 42: 657–662.

    Article  CAS  Google Scholar 

  • Hidaka T, Yamada Y and Shichijo T (1979). In vitro differentiation of haploid plants by anther culture in Poncirus trifoliata (L.) Raf. Japan J. Breed., 29: 248–254.

    Google Scholar 

  • Hidaka T and Omura M (1989). Control of embryogenesis in Citrus cell culture: regeneration from protoplasts and attempts to callus bank. Bull. Fruit Tree Res. Stn. B., 16: 1–17.

    Google Scholar 

  • Hidaka T, Omura M, Ugaki M, Tomiyama M, Kato A, Ohshima M and Motoyoshi F (1990). Agrobacteriummediated transformation and regeneration of Citrus spp. from suspension cells. Japan J. Breed., 40: 199–207.

    Google Scholar 

  • Hobbs SLA, Kpodar P and DeLong CMO (1990). The effect of T-DNA copy number, position and methylation on reporter gene expression in tobacco transformants. Plant Mol. Biol., 15: 851–864.

    Article  PubMed  CAS  Google Scholar 

  • Hobbs SLA, Warkentin TD and Delong CMO (1993). Transgene copy number can be positively or negatively associated with transgene expression. Plant Mol. Biol., 21: 17–26.

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann M, Bedhomme M, Carthy EM, Gambonnet B, Moran RG, Rébeillé F and Ravane S (2004). Identification and functional characterization of a chloroplastic transporter for vitamin B9 in Arabidopsis. Proceedings of 13th International Workshop on Plant Membrane Biology, Montpellier — France.

  • Horsch RB, Fry JE, Hoffmann NL, Eighholtz D, Rogers SG and Fraley RT (1985). Transferring genes into plants. Science, 227: 1229–1231.

    Article  CAS  Google Scholar 

  • Iglesias VA, Moscone EA, Papp I, Neuhuber F, Michalowski S, Phelan T, Spiker S, Matzke M and Matzke AJM (1997). Molecular and cytogenetic analyses of stably and unstably expressed transgene loci in tobacco. Plant Cell, 9: 1251–1264.

    Article  PubMed  CAS  Google Scholar 

  • Imai T, Aida R and Ishige T (1993). High frequency of tetraploidy in Agrobacterium-mediated transformants regenerated from tuber discs of diploid potato lines. Plant Cell Rep., 12: 299–302.

    Article  CAS  Google Scholar 

  • Iwanami T and Shimizu T (2004). Tolerance to Citrus mosaic virus in transgenic trifoliate orange lines harboring capsid polyprotein gene. Plant Dis., 88: 865–868.

    Article  CAS  Google Scholar 

  • James DJ, Uratsu S, Cheng J, Negri P, Viss P and Dandekar AM (1993). Acetosyringone and osmoprotectants like betaine or proline synergistically enhance Agrobacteriummediated transformation of apple. Plant Cell Rep., 12: 559–563.

    Article  CAS  Google Scholar 

  • James C (2006). Global status of commercialized biotech/GM crops, ISAAA Brief No. 35, ISAAA, Ithaca.

    Google Scholar 

  • Janssen BJ and Gardner RC (1993). The use of transient GUS expression to develop an Agrobacterium-mediated gene transfer system for kiwifruit. Plant Cell Rep., 1: 28–31.

    Google Scholar 

  • Jorgensen RA, Cluster PD, English J, Que Q and Napoli C (1996). Chalcone synthase co-suppression phenotypes in petunia flowers: Comparison of sense vs antisense constructs and single copy vs complex T-DNA sequences. Plant Mol Biol., 31: 957–973.

    Article  PubMed  CAS  Google Scholar 

  • Kaneyoshi J, Kobayashi S, Nakamura Y, Shigemoto N and Doi Y (1994). A simple and efficient gene transfer system of trifoliate orange (Poncirus trifoliata Raf.). Plant Cell Rep., 13: 541–545.

    CAS  Google Scholar 

  • Kayim M, Ceccardi TL, Berretta MJG, Barthe GA and Derrick KS (2004). Introduction of a citrus blight-associated gene into Carrizo citrange [Citrus sinensis (L.) Osbc. Poncirus trifoliata (L.) Raf.] by Agrobacterium-mediated transformation. Plant Cell Rep., 23: 377–385.

    Article  PubMed  CAS  Google Scholar 

  • Khan IA (2007). Citrus genetics, breeding and biotechnology. CABI International, Wallingford, UK.

    Google Scholar 

  • Khawale RN, Singh SK, Garg G, Baranwal VK and Ajirlo SA (2006). Agrobacterium-mediated genetic transformation of Nagpur mandarin (Citrus reticulate Blanco). Curr. Sci., 91: 1700–1705.

    CAS  Google Scholar 

  • Kobayashi S, Ikeda I and Nakatani M (1984). Induction of nucellar callus from orange (Citrus sinensis L. Osb.) ovules, and uniformity of regenerated plants. Bull. Fruit Tree Res. Stn; Series E, Akitsu, 5: 43–54.

    Google Scholar 

  • Kobayashi S (1987). Uniformity of plants regenerated from orange (Citrus sinensis Osb.) protoplasts. Theor. Appl. Genet. 74: 10–14.

    Article  CAS  Google Scholar 

  • Kobayashi S, Sakai A and Oiyama I (1990). Cryopreservation in liquid nitrogen of cultured navel orange (Citrus sinensis Osb.) nucellar cells and subsequent plant regeneration: Plant Cell Tiss. Org. Cult., 23: 15–20.

    Article  Google Scholar 

  • Kobayashi S, Nakamura Y, Kaneyoshi J, Higo H and Higo K (1996). Transformation of kiwifruit (Actinidia chinensis) and trifoliate orange (Poncirus trifoliata) with a synthetic gene encoding the human epidermal growth factor (hEGF). J. Jpn. Soc. Hort. Sci., 64: 763–769.

    Article  CAS  Google Scholar 

  • Kobayashi AK, Bespalhok JC, Pereira LFP and Vieira LGE (2003). Plant regeneration of sweet orange (Citrus sinensis) from thin sections of mature stem segments. Plant Cell Tiss. Org. Cult., 74: 99–102.

    Article  CAS  Google Scholar 

  • Kochba J and Spiegel-Roy P (1973). Effect of culture media on embryoid formation from ovular callus of ’shamouti’ orange (Citrus sinensis). Z. Pflanzenzuchtg., 69: 156–162.

    Google Scholar 

  • Kochba JP, Spiegel-Roy P, Neumann H and Saad S (1978). Stimulation of embryogenesis in Citrus ovular callus by ABA, ethephon, CCC and alar and its suppression by GA3. Z. Pflanzenphysiol., 89: 427–432.

    CAS  Google Scholar 

  • Kochba JP, Ben-Hayyim G, Spiegel-Ro YP, Neumann H and Saad S (1982). Selection of stable salt-tolerant callus cell lines and embryos in C. sinensis and C. aurantium. Z Pflanzenphysiol., 106: 111–118.

    CAS  Google Scholar 

  • Koltunow AM, Soltys K, Nito N and McClure S (1995). Anther, ovule, seed, and nucellar embryo development in Citrus sinensis cv Valencia. Can. J. Bot., 73: 1567–1582.

    Article  Google Scholar 

  • Koltunow AM, Brennan P and Protopsaltis S (1998). Regeneration of West Indian limes (Citrus aurantifolia) containing genes for decreased seed set. Acta Hortic., 535: 81–92.

    Google Scholar 

  • Kumar SV and Rajam MV (2005). Enhanced induction of vir genes results in the improvement of Agrobacteriummediated transformation of eggplant. J. Plant Biochem. Biotechnol., 14: 89–94.

    Google Scholar 

  • Laimer da Camara Machado M, Camara Machado A da, Panzer V, Weiss H, Regner F, Steinkellner H, Mattanovich D, Plail R, Knapp E, Kalthoff B and Katinger H (1992). Regeneration of transgenic plants of Prunus armeniaca containing the coat protein gene of plum pox virus. Plant Cell Rep., 11: 25–29.

    Google Scholar 

  • Li DD, Shi W and Deng XX (2002). Agrobacterium-mediated transformation of embryogenic calluses of Ponkan mandarin and the regeneration of plants containing the chimeric ribonuclease gene. Plant Cell Rep., 21:153–156.

    Article  CAS  Google Scholar 

  • Louzada ES, Grosser JW, Gmitter FG, Nielsen B, Chandler JL, Deng XX and Tusa N (1992). Eight new somatic hybrid citrus rootstocks with potential for improved disease resistance. HortSci., 27: 1033–1036.

    Google Scholar 

  • Luth D and Moore G (1999). Transgenic grapefruit plants obtained by Agrobacterium tumefaciens-mediated transformation. Plant Cell, 57: 219–222.

    CAS  Google Scholar 

  • Mante S, Morgens PH, Scorza R, Cordts JM and Callahan AM (1991). Agrobacterium-mediated transformation of plum (Prunus domestica L.) hypocotyl slices and regeneration of transgenic plants. Biotechnology, 9: 853–857.

    Article  CAS  Google Scholar 

  • Martin-Trillo M and Martinez-Zapater JM (2002). Growing up fast: manipulating the generation time of trees. Curr. Opin. Biotechnol., 13: 151–155.

    Article  PubMed  CAS  Google Scholar 

  • Mathews H, Dewey V, Wagoner W and Bestwick RK (1998). Molecular and cellular evidence of chimaeric tissues in primary transgenics and elimination of chimaerism through improved selection protocols. Transgenic Res., 7: 123–129.

    Article  CAS  Google Scholar 

  • Matzke AJM, Neuhuber F, Park Y-D, Ambros PF and Matzke MA (1994). Homology dependent gene silencing in transgenic plants: epistatic silencing loci contain multiple copies of methylated transgenes. Mol. Gen. Genet., 244: 219–229.

    Article  PubMed  CAS  Google Scholar 

  • Mendes BMJ, Boscariol RL, Mourão Filho FAA and Almeida WAB (2002). Agrobacterium-mediated transformation of citrus Hamlin cultivar (Citrus sinensis L. Osbeck) epicotyl segments. Pesquisa Agropecuária Brasileira, 37: 955–961.

    Article  Google Scholar 

  • Meyer P, Linn F, Heidmann I, Meyer HZA, Niedenhof I and Saedler H (1992). Endogenous and environmental factors influence 35S promoter methylation of a maize A1 gene construct in transgenic petunia and its colour phenotype. Mol. Gen. Genet., 231: 345–352.

    Article  PubMed  CAS  Google Scholar 

  • Molinari HBC, Bespalhok JC, Kobayashi AK, Pereira LFP and Vieira LGP (2004). Agrobacterium tumefaciensmediated transformation of Swingle citrumelo (Citrus paradisi Macf. X Poncirus trifoliata L. Raf.) using thin epicotyl sections. Sci. Hort. 99: 379–385.

    Article  CAS  Google Scholar 

  • Moore GA, Jacono CC, Neidigh JL, Lawrence SD and Cline K (1992). Agrobacterium-mediated transformation of Citrus stem explants and regeneration of transgenic plants. Plant Cell Rep., 11: 238–242

    Article  CAS  Google Scholar 

  • Moore GA, Febres VJ, Niblett CL, McCaffery Luth D and Garnsey SM (2000). Agrobacterium-mediated transformation of grapefruit (Citrus paradisi macf.) with genes from citrus tristeza virus. Acta Hort., 535: 237–243.

    Google Scholar 

  • Moreira-Dias JM, Molina RV, Bordon Y, Guardiola JL and Garcya-Luis A (2000). Direct and indirect shoot organogenic pathways in epicotyl cuttings of Troyer citrange differ in hormone requirements and in their response to light. Ann. Bot., 85: 103–110.

    Article  CAS  Google Scholar 

  • Moreira-Dias JM, Molina RV, Guardiola JL and Garcia-Luis A (2001). Daylength and photon flux density influence the growth regulator effects on morphogenesis in epicotyl segments of Troyer citrange. Sci. Hort., 87: 275–290.

    Article  CAS  Google Scholar 

  • Mullins MG, Tang FCA and Facciotti D (1990). Agrobacterium-mediated genetic transformation of grapevines: transgenic plants of Vitis rupestris Scheele and buds of Vitis vinifera L. Biotechnology, 8: 1041–1045.

    Article  CAS  Google Scholar 

  • Murashige T and Skoog F (1962). A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol. Plant, 15: 473–479.

    Article  CAS  Google Scholar 

  • Murashige T and Tucker DPH (1969). Growth factor requirements of Citrus tissue culture. Proc. First Intern. Citrus Symp., 3: 1155–1161.

    CAS  Google Scholar 

  • Nandadeva YL, Lupi YL, Lupi CG, Meyer CS, Devi PS, Potrykus I and Bilang R (1999). Microprojectilemediated transient and integrative transformation of rice embryogenic suspension cells: effects of osmotic cell conditioning and of the physiological configuration of plasmid DNA. Plant Cell Rep., 18: 500–504.

    Article  CAS  Google Scholar 

  • Navarro L (1992). Citrus shoot tip grafting in vitro. In: Bajaj, YPS (Ed.), Biotechnology in Agriculture and Forestry, Vol.18. Springer, Berlin Heidelberg, pp. 327–338.

    Google Scholar 

  • Navarro L, Olivares-Fuster O, Juarez J, Aleza P, Peña JA, Ballester-Olmos JF, Cervera M, Fagoaga C, Duran-Vila N and Peña L (2004). Applications of biotechnology to citrus improvement in Spain. Acta Hort., 632: 221–234.

    CAS  Google Scholar 

  • Niedz RP (1993). Culturing embryogenic protoplasts of ‘Hamlin’ sweet orange in calcium alginate beads. Plant Cell Tiss. Org. Cult., 34: 19–25.

    Article  CAS  Google Scholar 

  • Niedz RP (2006). Regeneration of somatic embryos from sweet orange (C. sinensis) protoplasts using semipermeable membranes. Plant Cell Tiss. Org. Cult., 84: 353–357.

    Article  Google Scholar 

  • Nito N and Iwamasa M (1990). In Vitro plantlet formation from juice vesicle callus of Satsuma (Citrus unshiu Marc.). Plant Cell Tiss. Org. Cult., 20: 137–140.

    Article  Google Scholar 

  • Obukosia SD and Waithaka K (2000). Nucellar embryo culture of Citrus sinensis L. and Citrus limon L. African Crop Sci. J., 8: 109–116.

    Google Scholar 

  • Ohgawara T, Kobayashi S, Ohgawara E, Uchimiya H and Ishii S (1985). Somatic hybrid plants obtained by protoplast fusion between Citrus sinensis and Poncirus trifoliata. Theor. Appl. Genet., 71: 1–4.

    Article  Google Scholar 

  • Ohgawara T, Uchimya H, Ishii S and Kobayashi S (1994). Somatic hybridization between Citrus sinensis and Poncirus trifoliata. In: Bajaj, YPS (Ed.) Biotechnology in Agriculture and Forestry, Vol. 27, Springer: Berlin, Heidelber, pp. 439–454.

    Google Scholar 

  • Olivares-Fuster O, Fleming GH, Albiach-Marti MR, Gowda S, Dawson WO and Grosser JW (2003). Citrus tristeza virus (CTV) resistance in transgenic citrus based on virus challenge of protoplasts. In Vitro Cell Dev. Biol. — Plant, 39: 567–572.

    Article  CAS  Google Scholar 

  • Olivares-Fuster O, Duran-Vila N and Navarro L (2005). Electrochemical protoplast fusion in citrus. Plant Cell Rep., 24: 112–119.

    Article  PubMed  CAS  Google Scholar 

  • Peach C and Velten J (1991). Transgene expression variability (position effect) of CAT and GUS reporter genes driven by linked divergent T-DNA promoters. Plant Mol. Biol., 17: 49–60.

    Article  PubMed  CAS  Google Scholar 

  • Peña L, Cervera M, Juárez J, Ortega C, Pina JA, Durán-Vila N and Navarro L (1995a). High efficiency Agrobacterium-mediated transformation and regeneration of citrus. Plant Sci., 104: 183–191.

    Article  Google Scholar 

  • Peña L, Cervera M, Juárez J, Navarro A, Pina JA, Durán-Vila N and Navarro L (1995b). Agrobacterium-mediated transformation of sweet orange and regeneration of transgenic plants. Plant Cell Rep., 14: 616–619.

    Article  Google Scholar 

  • Peña L, Cervera M, Juárez J, Navarro A, Pina JA and Navarro L (1997). Genetic transformation of lime (Citrus aurantifolia Swing.): factors affecting transformation and regeneration. Plant Cell Rep., 16: 731–737.

    Article  Google Scholar 

  • Peña L, Martin-Trillo M, Juarez J, Pina JA, Navarro L and Martínez-Zapater M (2001). Constitutive expression of Arabidopsis LEAFY or APETALA1 genes in citrus reduces their generation time. Nat. Biotechnol., 19: 263–267.

    Article  PubMed  Google Scholar 

  • Pennd Navarro L (2004). Early events in Agrobacterium-mediated genetic transformation of Citrus explants. Ann. Bot., 94: 67–74.

    Article  CAS  Google Scholar 

  • Pérez-Clemente RM, Montoliu A, López P, López-Climent MF, Arbona V and Gómez-Cadenas A (2008). In vitro tissue culture approaches for the study of salt stress in citrus. Biosaline Agriculture and High Salinity Tolerance, Springer: Birkhauser Basel, pp. 37–42.

    Chapter  Google Scholar 

  • Pérez-Molphe-Balch E and Ochoa-Alejo N (1997). In vitro plant regeneration of Mexican lime and mandarin by direct organogenesis. HortSci., 32: 931–934.

    Google Scholar 

  • Piestun D, Batuman O, Che X, Gofman R, Filatov V, Zypman S, Gafny R, Bar Joseph M, Goren R and Goldschmidt EE (2000). Trunacted version of the citrus tristeza virus (CTV) replicase and basta resistance genes incorporated in transgenic Troyer citrange. Acta Hort., 535: 223–230.

    CAS  Google Scholar 

  • Poupin MJ and Arce-Johnson P (2005). Transgenic trees for a new era. In Vitro Cell Dev. Biol. — Plant, 41: 91–101.

    Article  CAS  Google Scholar 

  • Rai M (2006). Refinement of the Citrus tristeza virus resistance gene (Ctv) positional map in Poncirus trifoliata and generation of transgenic grapefruit (Citrus paradisi) plant lines with candidate resistance genes in this region. Plant Mol. Biol. 61: 399–414.

    Article  PubMed  CAS  Google Scholar 

  • Ray R and Walheim L (1980). Citrus. Los Angeles. Price Stern Sloan, Inc.

    Google Scholar 

  • Rocha-Peña MA, Lastra R, Niblett CL, Ochoa-Corona FM, Garnsey SM and Yokomi RK (1995). Citrus tristeza virus and its aphid vector Toxoptera citricida. Plant Dis., 79: 437–445.

    Google Scholar 

  • Rodriguez A, Cervera M, Peris JE and Pena L (2008). The same treatment for transgenic shoot regeneration elicits the opposite effect in mature explants from two closely related sweet orange (Citrus sinensis (L.) Osb.) genotypes. Plant Cell Tiss. Org. Cult., 93: 97–106.

    Article  Google Scholar 

  • Sanford JC, Smith FD and Russell AJ (1993). Optimizing the biolistic process for different biological applications. Meth. Enzymol., 217: 483–509.

    Article  PubMed  CAS  Google Scholar 

  • Sangwan RS, Bourgeois Y, Brown S, Vasseur G and Sangwan-Norreel B (1992). Characterization of competent cells and early events of Agrobacterium-mediated genetic transformation in Arabidopsis thaliana. Planta, 188: 439–456.

    Article  CAS  Google Scholar 

  • Saunt J 1990. Citrus varieties of the world. Sinclair International Ltd. pp. 126.

  • Scheid OM, Jakovleva L, Afsar K and Maluszynska J (1996). A change of ploidy can modify epigenetic silencing. Proc. Natl. Acad. Sci., USA, 93: 7114–7119.

    Article  Google Scholar 

  • Schmulling T and Schell J (1993). Transgenic tobacco plants regenerated from leaf disks can be periclinal chimeras. Plant Mol. Biol., 21: 705–708.

    Article  PubMed  CAS  Google Scholar 

  • Seguin A and Pena L (2001). Recent advances in the genetic transformation of citrus. Trends Biotechnol., 19: 500506.

    Google Scholar 

  • Seki M, Komeda Y, Iida A, Yamada Y and Morikawa H (1991). Transient expression of β-glucuronidase in Arabidopsis thaliana leaves and roots and Brassica napus stems using a pneumatic particle gun. Plant Mol. Biol., 17: 259–263.

    Article  PubMed  CAS  Google Scholar 

  • Sekiya ME, Lawrence SD, McCaffery M and Cline K (1991). Molecular cloning and nucleotide sequencing of the coat protein gene of citrus tristexa virus. J. Gen. Virol., 72: 1013–1020.

    Article  PubMed  CAS  Google Scholar 

  • Seong ES and Song KJ (2008). Factors affecting the early gene transfer step in the development of transgenic ‘Fuji’ apple plants. Plant Growth Regul. 54: 89–95.

    Article  CAS  Google Scholar 

  • Sim GE, Goh CJ and Loh CS (1989). Micropropagation of Citrus mitis Blanco— Multiple bud formation from shoot and root explants in the presence of 6-Benzylaminopurine. Plant Sci., 59: 203–210.

    Article  CAS  Google Scholar 

  • Sinclair and Walter B (1984). The biochemistry and the physiology of the lemon and other citrus fruits. ANR Publications, Oakland.

    Google Scholar 

  • Singh B, Sharma S, Rani G, Hallan V, Zaidi AA, Virk GS and Nagpal A (2008). In vitro micrografting for the production of Indian citrus ringspot virus (ICRSV)-free plants of kinnow mandarin (Citrus nobilis Lour X C. deliciosa Tenora). Plant Biotechnol. Rep., 2: 137–143.

    Article  Google Scholar 

  • Soost RK and Cameron JW (1975). Citrus. In: Advances in Fruit Breeding. (Janick, J. and Moore, J.N., eds.). Purdue University Press, West Lafayette, pp. 229–241.

    Google Scholar 

  • Spolaore S, Trainotti L and Casadoro G (2001). A simple protocol for transient gene expression in ripe fleshy fruit mediated by Agrobacterium. J. Exp. Bot., 52: 845–850.

    PubMed  CAS  Google Scholar 

  • Tagu D, Bergounioux C, Perennes C and Gadal P (1990). Inheritance of two foreign genes co-introduced into Petunia hybrida by direct gene transfer. Plant Cell Tiss. Org. Cult., 21: 259–266.

    Article  CAS  Google Scholar 

  • Talon M and Gmitter Jr GF (2008). Citrus Genomics. Intern. J. Plant Genomics, 2008: 1–17.

    Article  CAS  Google Scholar 

  • Tomaz ML, Mendes BMJ, Mourao FDA, Demetrio CGB, Jansakul N and Rodriguez APM (2001). Somatic embryogenesis in Citrus spp.: carbohydrate stimulation and histodifferentiation. In Vitro Cell Dev. Biol.-Plant, 37: 446–452.

    Article  CAS  Google Scholar 

  • Tucker ML, Whitelaw CA, Lyssenko NN and Nath P (2002). Functional analysis of regulatory elements in the gene promoter for an abscission-specific cellulase from bean and isolation, expression, and binding affinity of three TGA-type basic leucine zippe transcription factors. Plant Physiol., 130: 1487–1496.

    Article  PubMed  CAS  Google Scholar 

  • Usman M, Muhammad S and Fatima B (2005). In vitro multiple shoot induction from nodal explants of citrus cultivars. J. Cent. Eur. Agric., 6: 435–442.

    Google Scholar 

  • Van Duyn MAS and Pivonka E (2000). Overview of the health benefits of fruit and vegetable consumption for the dietetics professional. USDA National Nutrient Database for Standard Reference Release 17, 2005: Selected literature. J. Amer. Diet. Assoc., 100: 1511–1521.

    Article  Google Scholar 

  • Vardi A, Spiegel-Roy P and Galun E (1975). Citrus cell culture: isolation of protoplasts, plating densities, effect of mutagens and regeneration of embryos. Plant Sci. Lett., 4: 231–236.

    Article  Google Scholar 

  • Vardi A (1981). Protoplast derived from different citrus species and cultivars. Intern. Soc. Citricult. Proc., 1: 149–152.

    Google Scholar 

  • Vardi A, Arzee-Gonen P, Frydman-Shani A, Bleichman S and Galun E (1989). Protoplast-fusion-mediated transfer of organelles from Microcitrus into Citrus and regeneration of novel alloplasmic trees. Theor. Appl. Genet., 78: 741–747.

    Article  Google Scholar 

  • Wang GL and Fang HJ (1998). Plant genetic engineering: principle and technique (in Chinese), Science Press, Beijing.

    Google Scholar 

  • Xiang C and Roose ML (1988). Frequency and characteristics of nucellar and zygotic seedlings in 12 citrus rootstocks. Sci. Hort., 37: 47–59.

    Article  Google Scholar 

  • Xiao-hong Y, Zhong-hail S and Rui-jian T (2006). Optimizing culture system of Ri T-DNA transformed roots for Citrus grandis cv. Changshou Shatian You. Agric. Sci. China 5: 90–97.

    Google Scholar 

  • Yang ZN, Ingelbrecht IL, Louzada E, Skaria M and Mirkov TE (2000). Agrobacterium-mediated transformation of the commercially important grapefruit cultivar Rio Red (Citrus paradisi Macf.). Plant Cell Rep., 19: 1203–1211.

    Article  CAS  Google Scholar 

  • Yao JL, Wu JH, Gleave AP and Morris BAM (1996). Transformation of citrus embryogenic cells using particle bombardment and production of transgenic embryos. Plant Sci., 113: 175–183.

    Article  CAS  Google Scholar 

  • Yoshida T (1996). Graft compatibility of citrus with plants in the Aurantioideae and their susceptibility to citrus tristeza virus. Plant Dis., 80: 414–417.

    Google Scholar 

  • Yu C, Huang S, Chen C, Deng Z, Ling P and Gmitter FG (2002). Factors affecting Agrobacterium-mediated transformation and regeneration of sweet orange and citrange. Plant Cell Tiss. Org. Cult., 71: 147–155.

    Article  CAS  Google Scholar 

  • Zou X, Li D, Luo X, Luo K and Pei Y (2008). An improved procedure for Agrobacterium-mediated transformation of trifoliate orange (Poncirus trifoliata L. Raf.) via indirect organogenesis. In Vitro Cell Dev. Biol. Plant, 44: 169–177.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manchikatla V. Rajam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, S., Rajam, M.V. Citrus biotechnology: Achievements, limitations and future directions. Physiol Mol Biol Plants 15, 3–22 (2009). https://doi.org/10.1007/s12298-009-0001-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-009-0001-2

Key words

Navigation