Skip to main content

Advertisement

Log in

Microbial phytases in phosphorus acquisition and plant growth promotion

  • Review Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

Phosphorus (P) is one of the major constituents in energy metabolism and biosynthesis of nucleic acids and cell membranes with an important role in regulation of a number of enzymes. Soil phosphorous is an important macronutrient for plant growth. Phosphorus deficiency in soil is a major problem for agricultural production. Total soil P occurs in either organic or in organic form. Phytic acid as phytate (salts of phytic acid) is the major form of organic phosphorus in soil and it is not readily available to plants as a source of phosphorus because it either forms a complex with cations or adsorbs to various soil components. Phosphate solubilizing microorganisms are ubiquitous in soils and could play an important role in supplying P to plants. Microorganisms utilizing phytate are found in cultivated soils as well as in wetland, grassland and forest soils. Various fungi and bacteria (including plant growth promoting rhizobacteria) hydrolyze this organic form of phosphorus secreting phosphatases such as phytases and acidic/alkaline phosphatases. A large number of transgenic plants have been developed which were able to utilize sodium phytate as sole source of phosphorus. However, the recombinant phytases were similar to their wild type counterparts in terms of their properties. Increased phytase/phosphatase activity in transgenic plants may be an effective approach to promote their phytate-phosphorus utilization. The extracellular phytase activity of transgenic plant roots is a significant factor in the utilization of phosphorus from phytate. Furthermore, this indicated that an opportunity exists for using gene technology to improve the ability of plants to utilize accumulated forms of soil organic phosphorus. This review is focused on the role of phytases and phytase producing microbes in promoting the growth of different plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abd-Alla MH (1994) Use of organic phosphorus by Rhizobium leguminosarum biovar viceae phosphatases. Biol Fertil Soils 18:216–218

    Article  CAS  Google Scholar 

  • Abelson PH (1999) A potential phosphate crisis. Science 283:2015

    Article  PubMed  CAS  Google Scholar 

  • Adams MA, Pate JS (1992) Availability of organic and inorganic forms of phosphorus to lupins (Lupinus spp.). Plant Soil 145:107–113

    Article  Google Scholar 

  • Anderson G (1980) Assessing organic phosphorus in soils. In: Khasawneh FE, Sample EC, Kamprath EJ (eds) The role of phosphorus in agriculture. Amer. Soc. Agronomy, Madison, pp 411–432

    Google Scholar 

  • Bishop ML, Chang AC, Lee RWK (1994) Enzymatic mineralization of organic phosphorus in a volcanic soil in Chile. Soil Sci 157:238–243

    Article  CAS  Google Scholar 

  • Bloemberg GV, Lugtenberg BJJ (2001) Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr Opin Plant Biol 4:343–350

    Article  PubMed  CAS  Google Scholar 

  • Brinch-Pedersen H, Olesen A, Rasmussen SK, Holm PB (2000) Generation of transgenic wheat (Triticum aestivum L.) for constitutive accumulation of an Aspergillus phytase. Mol Breed 6:195–206

    Article  CAS  Google Scholar 

  • Burns RG (1983) Extracellular enzyme-substrate interactions in soil. In: Slater JH, Whittenbury R, Wimpenny JWT (eds) Microbes in their natural environment. Cambridge University Press, Cambridge, pp 249–298

    Google Scholar 

  • Burns DM, Beacham IR (1986) Nucleotide sequence and transcriptional analysis of the Escherichia coli ushA gene, encoding periplasmic UDP-sugar hydrolase (59-nucleotidase): regulation of the ushA gene, and the signal sequence of its encoded protein product. Nucleic Acids Res 14:4325–4342

    Article  PubMed  CAS  Google Scholar 

  • Chen R, Xue G, Chen P, Yao B, Yang W, Ma Q, Fan Y, Zhao Z, Tarczynski MC, Shi J (2008) Transgenic maize plants expressing a fungal phytase gene. Transgen Res 17(4):633–643

    Article  CAS  Google Scholar 

  • Cosgrove DJ, Irving GCJ, Bromfield SM (1970) Inositol phosphate phosphatases of microbial origin. The isolation of soil bacteria having inositol phosphate phosphatase activity. Aust J Biol Sci 23:339–343

    CAS  Google Scholar 

  • Dalal RC (1977) Soil organic phosphorus. Adv Agron 29:83–117

    Article  CAS  Google Scholar 

  • Denbow DM, Grabau EA, Lacy GH, Kornegay ET, Russell DR, Umbeck PF (1998) Soybeans transformed with a fungal phytase gene improve phosphorus availability for broilers. Poult Sci 77:878–881

    PubMed  CAS  Google Scholar 

  • Dey KB (1988) Phosphate solubilizing organisms in improving fertility status. In: Sen SP, Palit P (eds) Biofertilizers: potentialities and problems. Plant Physiology Forum, Naya Prokash, pp 237–248

    Google Scholar 

  • Drakakaki G, Marcel S, Glahn RP, Lund EK, Pariagh S, Fischer R, Christou P, Stoger E (2005) Endosperm-specific co-expression of recombinant soybean ferritin and Aspergillus phytase in maize results in significant increases in the levels of bioavailable iron. Plant Mol Biol 59(6):869–880

    Article  PubMed  CAS  Google Scholar 

  • El-Sawah MMA, Hauka FIA, El-Rafey HH (1993) Study on some enzymes cleaving phosphorus from organic substrates in soil. J Agric Sci 18:2775–2785

    Google Scholar 

  • Feller C, Frossard E, Brossard M (1994) Phosphatase activity in low activity tropical clay soils. Distribution in the various particle size fractions. Can J Soil Sci 74:121–129

    Article  CAS  Google Scholar 

  • Fernández C, Novo VR (1988) Microbiana en el Suelo, II. La Habana: Editorial Puebloy Educación

  • Fox TR, Comerford NB (1992) Rhizosphere phosphatase activity and phosphatase hydrolysable organic phosphorus in two forested spodosols. Soil Biol Biochem 24:579–583

    Article  CAS  Google Scholar 

  • Garcia C, Fernandez T, Costa F, Cerranti B, Masciandaro G (1992) Kinetics of phosphatase activity in organic wastes. Soil Biol Biochem 25:361–365

    Google Scholar 

  • George TS, Richardson AE, Simpson RJ (2005) Behaviour of plant-derived extracellular phytase upon addition to soil. Soil Biol Biochem 37:977–988

    Article  CAS  Google Scholar 

  • George TS, Richardson AE, Li SS, Gregory PJ, Daniell TJ (2009) Extracellular release of a heterologous phytase from roots of transgenic plants: does manipulation of rhizosphere biochemistry impact microbial community structure? FEMS Microbiol Ecol 70(3):433–445

    PubMed  CAS  Google Scholar 

  • Goldstein AH (1986) Bacterial solubilization of mineral phosphates: historical perspective and future prospects. Am J Altern Agri 1:51–57

    Google Scholar 

  • Goldstein AH (1994) Involvement of the quinoprotein glucose dehydrogenase in the solubilization of exogenous phosphates by gram-negative bacteria. In: Torriani-Gorini A, Yagil E, Silver S (eds) Phosphate in microorganisms: cellular and molecular biology. ASM, Washington, DC, pp 197–203

    Google Scholar 

  • Greaves MP, Webley DM (1965) A study of the breakdown of organic phosphates by microorganisms from the root region of certain pasture grasses. J Appl Bacteriol 28:454–465

    PubMed  CAS  Google Scholar 

  • Gügi B, Orange N, Hellio F, Burini JF, Guillou C, Leriche F, Guespin-Michel JF (1991) Effect of growth temperature on several exported enzyme activities in the psychrotropic bacterium Pseudomonas fluorescens. J Bacteriol 173:3814–3820

    PubMed  Google Scholar 

  • Gutknecht K (1997) Green genes: alfalfa biofarming is about to take root. Wisc Agrict Mid-March: 8–10

  • Halder AK, Mishra AK, Bhattacharyya P, Chakrabartty PK (1990) Solubilization of rock phosphate by Rhizobium and Bradyrhizobium. J Gen Appl Microbiol 36:81–92

    Article  CAS  Google Scholar 

  • Hameeda B, Rupela OP, Reddy G, Satyavani K (2006) Application of plant growth-promoting bacteria associated with composts and macrofauna for growth promotion of Pearl millet (Pennisetum glaucum L.). Biol Fertil Soils 43:221–227

    Article  Google Scholar 

  • Hariprasad P, Niranjana SR (2009) Isolation and characterization of phosphate solubilizing rhizobacteria to improve plant health of tomato. Plant Soil 316:13–24

    Article  CAS  Google Scholar 

  • Harley JL, Smith SE (1983) Mycorrhizal symbiosis. Academic, London

    Google Scholar 

  • Hayes JE, Simpson RJ, Richardson AE (2000) The growth and phosphorus utilisation of plants in sterile media when supplied with inositol hexaphosphate, glucose 1-phosphate or inorganic phosphate. Plant Soil 220:165–174

    Article  CAS  Google Scholar 

  • Hens M, Turner BL, Hocking PJ (2003) Chemical nature and bioavailability of soil organic phosphorus mobilized by organic anions. In: Rengel Z (ed) Proceeding of 2nd international symposium on phosphorus dynamics in the soil–plant continuum. University of Western Australia, Perth, pp 16–17

    Google Scholar 

  • Hiltner L (1904) Über neuere Erfahrungen und Probleme auf dem Gebiet der Bodenbakteriologie und unter besonderer Berücksichtigung der Grunddüngung und Brache. Arb Deut Landw Gesell 98:59–78

    Google Scholar 

  • Hong C, Cheng K, Tseng T, Wang C, Liu L, Yu S, Hong CY, Cheng KJ, Tseng TH, Wang CS, Liu LF, Yu SM (2004) Production of two highly active bacterial phytases with broad pH optima in germinated transgenic rice seeds. Trans Res 13:29–39

    Article  CAS  Google Scholar 

  • Idriss EE, Makarewicz O, Farouk A, Rosner K, Greiner R, Bochow H, Richter T, Borriss R (2002) Extracellular phytase activity of Bacillus amyloliquefaciens FZB45 contributes to its plant-growth-promoting effect. Microbiol 148(Pt 7):2097–2109

    CAS  Google Scholar 

  • Jones DA, Smith BFL, Wilson MJ, Goodman BA (1991) Solubilizator fungi of phosphate in rice soil. Mycol Res 95:1090–1093

    Article  Google Scholar 

  • Jorquera MA, Hernández MT, Rengel Z, Marschner P, Luz Mora M (2008) Isolation of culturable phosphobacteria with both phytate-mineralization and phosphate-solubilization activity from the rhizosphere of plants grown in a volcanic soil. Biol Fertil Soils 44:1025–1034

    Article  CAS  Google Scholar 

  • Kirchner MJ, Wollum AG, King LD (1993) Soil microbial populations and activities in reduced chemical input agroecosystems. Soil Sci Soc Amer J 57:1289–1295

    Article  CAS  Google Scholar 

  • Kloepper JW, Lifshitz K, Schroth MN (1988) Pseudomonas inoculants to benefit plant production. ISI Atlas Sci Anim Plant Sci. 60–64

  • Kremer RJ (1994) Determination of soil phosphatase activity using a microplate method. Commun Soil Sci Plant Anal 25:319–325

    Article  CAS  Google Scholar 

  • Kucharski J, Ciecko Z, Niewolak T, Niklewska-Larska T (1996) Activity of microrganisms in soils of different agricultural usefulness complexes fertilized with mineral nitrogen. Acta Acad Agric Tech Olst 62:25–35

    Google Scholar 

  • Li J, Hegeman CE, Hanlon RW, Lacy GH, Denbow DM, Grabau EA (1997) Secretion of active recombinant phytase from soybean cell-suspension cultures. Plant Physiol 114:1103–1111

    Article  PubMed  CAS  Google Scholar 

  • Li X, Wu Z, Li W, Yan R, Li L, Li J, Li Y, Li M (2007) Growth promoting effect of a transgenic Bacillus mucilaginosus on tobacco planting. Appl Microbiol Biotechnol 74(5):1120–1125

    Article  PubMed  CAS  Google Scholar 

  • Li G, Yang S, Li M, Qiao Y, Wang J (2009) Functional analysis of an Aspergillus ficuum phytase gene in Saccharomyces cerevisiae and its root-specific, secretory expression in transgenic soybean plants. Biotechnol Lett 31:1297–1303

    Article  PubMed  CAS  Google Scholar 

  • Lindsay WL (1979) Chemical equilibrial in soil. Wiley, New York

    Google Scholar 

  • Lung SC, Lim BL (2006) Assimilation of phytate-phosphorus by the extracellular phytase activity of tobacco (Nicotiana tabacum) is affected by the availability of soluble phytate. Plant Soil 279:187–199

    Article  CAS  Google Scholar 

  • Lung SC, Chan WL, Yip W, Wang L, Yeung EC, Lim BL (2005) Secretion of beta-propeller phytase from tobacco and Arabidopsis roots enhances phosphorus utilization. Plant Sci 169(2):341–349

    Article  CAS  Google Scholar 

  • Lung SC, Leung A, Kuang R, Wang Y, Leung P, Lim BL (2008) Phytase activity in tobacco (Nicotiana tabacum) root exudates is exhibited by a purple acid phosphatase. Phytochemistry 69:365–373

    Article  PubMed  CAS  Google Scholar 

  • Lynch JM (1990) Microbial metabolites. In: Lynch JM (ed) The rhizosphere. John Wiley and Sons Ltd, Baffins Lane, Interscience, Chichester, pp 177–206

    Google Scholar 

  • Ma X, Wright E, Ge Y, Bell J, Yajun X, Bouton JH, Wang Z (2009) Improving phosphorus acquisition of white clover (Trifolium repens L.) by transgenic expression of plant-derived phytase and acid phosphatase genes. Plant Sci 176:479–488

    Article  CAS  Google Scholar 

  • McGrath JW, Wisdom GB, McMullan G, Lrakin MJ, Quinn JP (1995) The purification and properties of phosphonoacetate hydrolase, a novel carbon-phosphorus bond-cleaving enzyme from Pseudomonas fluorescens 23F. Eur J Biochem 234:225–230

    Article  PubMed  CAS  Google Scholar 

  • McGrath JW, Hammerschmidt F, Quinn JP (1998) Biodegradation of phosphonomycin by Rhizobium huakui PMY1. Appl Environ Microbiol 64:356–358

    PubMed  CAS  Google Scholar 

  • Mendoza C (2002) Effect of genetically modified low phytic acid plants on mineral absorption. Int J Food Sci Technol 37:759–767

    Article  CAS  Google Scholar 

  • Mudge SR, Frank WS, Richardson AE (2003) Root-specific and phosphate-regulated expression of phytase under the control of a phosphate transporter promoter enables Arabidopsis to grow on phytate as a sole P source. Plant Sci 165(4):871–878

    Article  CAS  Google Scholar 

  • Nautiyal CS, Bhadauria S, Kumar P, Lal H, Mondal R, Verma D (2000) Stress induced phosphate solubilization in bacteria isolated from alkaline soils. FEMS Microbiol Lett 182:291–296

    Article  PubMed  CAS  Google Scholar 

  • Odum EP (1986) Fundamentos de Ecologìa. Interamericana, Mexico

    Google Scholar 

  • Ohtake H, Wu H, Imazu K, Ambe Y, Kato J, Kuroda A (1996) Bacterial phosphonate degradation, phosphite oxidation and polyphosphate accumulation. A Res Conserv Recycl 18:125–134

    Article  Google Scholar 

  • Patel KJ, Singh AK, Nareshkumar G, Archana G (2010) Organic-acid-producing, phytate-mineralizing rhizobacteria and their effect on growth of pigeon pea (Cajanus cajan). Appl Soil Ecol 44(3):252–261

    Article  Google Scholar 

  • Paul EA, Clark FE (1988) Soil microbiology and biochemistry. Academic, San Diego

    Google Scholar 

  • Pen J, Verwoerd TC, van Paridon PA, Beudeker RF, van den Elzen PJM, Geerse K, van der Klis JD, Versteegh HAJ, van Ooyen AJJ, Joekema A (1993) Phytase-containing transgenic seeds as a novel feed additive for improved phosphorus utilization. Bio/Technology 11:811–814

    Article  CAS  Google Scholar 

  • Ponstein AS, Bade JB, Verwoerd TC, Molendijk L, Storms J, Beudeker RF, Pen J (2002) Stable expression of Phytase (phyA) in canola (Brassica napus) seeds: towards a commercial product. Mol Breed 10:31–44

    Article  CAS  Google Scholar 

  • Pradel E, Boquet PL (1988) Acid phosphatases of Escherichia coli: molecular cloning and analysis of agp, the structural gene for a periplasmic acid glucose phosphatase. J Bacteriol 170:4916–4923

    PubMed  CAS  Google Scholar 

  • Raghu K, MacRae IC (1966) Occurrence of phosphate-dissolving microorganisms in the rhizosphere of rice plants and in submerged soils. J Appl Bacteriol 29:582–586

    PubMed  CAS  Google Scholar 

  • Rahi P, Vyas P, Sharma S, Gulati A, Gulati A (2009) Plant growth promoting potential of the fungus Discosia sp. FIHB 571 from tea rhizosphere tested on chickpea, maize and pea. Indian J Microbiol 49(2):128–133

    Article  CAS  Google Scholar 

  • Rao DE, Rao KV, Reddy TP, Reddy VD (2009) Molecular characterization, physicochemical properties, known and potential applications of phytases: An overview. Crit Rev Biotechnol 29(2):182–198

    Article  PubMed  CAS  Google Scholar 

  • Richardson AE (1994) Soil microorganisms and phosphorous availability. In: Pankhurst CE, Doube BM, Gupta VVSR (eds) Soil biota: management in sustainable farming systems. CSIRO, Victoria, pp 50–62

    Google Scholar 

  • Richardson AE (2001) Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Aust J Plant Physiol 28:897–906

    Google Scholar 

  • Richardson AE, Hadobas PA (1997) Soil isolates of Pseudomonas spp. that utilize inositol phosphates. Can J Microbiol 43:509–516

    Article  PubMed  CAS  Google Scholar 

  • Richardson AE, Hadobas PA, Hayes JE (2001a) Extracellular secretion of Aspergillus phytase from Arabidopsis roots enables plants to obtain phosphorous from phytate. Plant J 25:641–649

    Article  PubMed  CAS  Google Scholar 

  • Richardson AE, Hadobas PA, Hayes JE, Hara CP, Simpson RJ (2001b) Utilization of phosphorus by pasture plants supplied with myo-inositol hexaphosphate is enhanced by the presence of soil micro-organisms. Plant Soil 229:47–56

    Article  CAS  Google Scholar 

  • Richardson AE, Barea J, McNeill AM, Prigent-Combaret C (2009a) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 339:305–339

    Article  CAS  Google Scholar 

  • Richardson AE, Hocking PJ, Simpson RJ, George TS (2009b) Plant mechanisms to optimise acces to soil phosphorus. Crop Past Sci 60:124–143

    Article  CAS  Google Scholar 

  • Rodríguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    Article  PubMed  Google Scholar 

  • Rossolini GM, Shippa S, Riccio ML, Berlutti F, Macaskie LE, Thaller MC (1998) Bacterial nonspecific acid phosphatases: physiology, evolution, and use as tools in microbial biotechnology. Cell Mol Life Sci 54:833–850

    Article  PubMed  CAS  Google Scholar 

  • Roychoudhury P, Kaushik BD (1989) Solubilization of Mussorie rock phosphate by cyanobacteria. Curr Sci 58:569–570

    CAS  Google Scholar 

  • Ryu CM, Hu CH, Locy RD, Kloepper JW (2005) Study of mechanisms for plant growth promotion elicited by rhizobacteria in Arabidopsis thaliana. Plant Soil 268:285–292

    Article  CAS  Google Scholar 

  • Shengfang H, Juntao G, Kai K (2007) Improving organic phosphate utilization in transgenic white clover by overexpression of Aspergillus niger PhyA gene. Front Agric China 1(3):265–270

    Google Scholar 

  • Singh B, Satyanarayana T (2010) Plant growth promotion by an extracellular HAP-phytase of a thermophilic mold Sporotrichum thermophile. Appl Biochem Biotechnol 160(5):1267–1276

    Article  PubMed  CAS  Google Scholar 

  • Skrary FA, Cameron DC (1998) Purification and characterization of a Bacillus licheniformis phosphatase specific for D-alpha-glycerphosphate. Arch Biochem Biophys 349:27–35

    Article  Google Scholar 

  • Steenhoudt O, Vanderleyden J (2000) Azospirillum, a free living nitrogen-fixing bacteria closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol Rev 24:487–506

    Article  PubMed  CAS  Google Scholar 

  • Tang J, Leung A, Leung C, Lim BL (2006) Hydrolysis of precipitated phytate by three distinct families of phytases. Soil Biol Chem 38:316–320

    Article  CAS  Google Scholar 

  • Tarafdar JC, Claassen N (1988) Organic phosphorus compounds as a phosphorus source for higher plants through the activity of phosphatases produced by plant roots and microorganisms. Biol Fertil Soils 5:308–312

    Article  CAS  Google Scholar 

  • Tarafdar JC, Gharu A (2006) Mobilization of organic and poorly soluble phosphates by Chaetomium globosum. Appl Soil Ecol 32(3):273–283

    Article  Google Scholar 

  • Tarafdar JC, Junk A (1987) Phosphatase activity in the rhizosphere and its relation to the depletion of soil organic phosphorus. Biol Fertil Soil 3:199–204

    Article  CAS  Google Scholar 

  • Tarafdar JC, Marschner H (2005) Dual inoculation with Aspergillus fumigatus and Glomus mosseae enhances biomass production and nutrient uptake in wheat (Triticum aestivum L.) supplied with organic phosphorus as Na-phytate. Plant Soil 173(1):97–102

    Google Scholar 

  • Tarafdar JC, Rao AV (1996) Contribution of Aspergillus strains to acquisition of phosphorus by wheat (Triticum aestivum L.) and chick pea (Cicer arietinum Linn.) grown in a loamy sand soil. Appl Soil Ecol 3(2):109–114

    Article  Google Scholar 

  • Tarafdar JC, Rao AV, Bala K (1988) Production of phosphatases by fungi isolated from desert soils. Folia Microbiol 33:453–457

    Article  CAS  Google Scholar 

  • Thaller MC, Berlutti F, Schippa S, Iori P, Passariello C, Rossolini GM (1995) Heterogeneous patterns of acid phosphatases containing low-molecular-mass Polypeptides in members of the family Enterobacteriaceae. Int J Syst Bacteriol 4:255–261

    Article  Google Scholar 

  • Turner BL, Paphazy MJ, Haygarth PM, Mckelvie ID (2002) Inositol phosphates in the environment. Philos Trans R Soc Lond B Biol Sci 357:449–469

    Article  PubMed  CAS  Google Scholar 

  • Ullah AHJ, Sethumadhavan K, Mullaney EJ, Ziegelhoffer T, Austin-Phillips S (1999) Characterization of recombinant fungal phytase (phyA) expressed in tobacco leaves. Biochem Biophys Res Commun 264:201–206

    Article  PubMed  CAS  Google Scholar 

  • Ullah AHJ, Sethumadhavan K, Mullaney EJ, Zieglhoffer T, Austin-Phillips S (2002) Cloned and expressed fungal phyA gene in alfalfa produces a stable phytase. Biochem Biophys Res Commun 290:1343–1348

    Article  PubMed  CAS  Google Scholar 

  • Unno Y, Okubo K, Wasaki J, Shinano T, Osaki M (2005) Plant growth promotion abilities and microscale bacterial dynamics in the rhizosphere of Lupin analysed by phytate utilization ability. Environ Microbiol 7(3):396–404

    Article  PubMed  Google Scholar 

  • Vance CP, Uhde-Stone C, Allan DL (2003) Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol 157:423–447

    Article  CAS  Google Scholar 

  • Verwoerd TC, Van Paridon PA, Van Ooyen AJJ, van Lent JWM, Hoekema A, Pen J (1995) Stable accumulation of Aspergillus niger phytase in transgenic tobacco leaves. Plant Physiol 109:1199–1205

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Gao X, Su Q, Wu W, An L (2007) Expression of a heat stable phytase from Aspergillus fumigatus in tobacco (Nicotiana tabacum L. cv. NC89). Indian J Biochem Biophys 44(1):26–30

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Wang Y, Tian J, Lim BL, Yan X, Liao H (2009) Overexpressing AtPAP15 enhances phosphorus efficiency in soybean. Plant Physiol 151(1):233–240

    Article  PubMed  CAS  Google Scholar 

  • Wasaki J, Maruyama H, Tanaka M, Yamamura T, Dateki H, Shinano T, Ito S, Osaki M (2009) Overexpression of the LASAP2 gene for secretory acid phosphatase in white lupin improves the phosphorus uptake and growth of tobacco plants. Soil Sci Plant Nutr 55:107–113

    Article  CAS  Google Scholar 

  • Whipps JM (1990) Carbon economy. In: Lynch JM (ed) The rhizosphere. Wiley, West Sussex, pp 59–97

    Google Scholar 

  • Xiao K, Harrison MJ, Wang ZY (2005) Transgenic expression of a novel M. truncatula phytase gene results in improved acquisition of organic phosphorus by Arabidopsis. Planta 222(1):27–36

    Article  PubMed  CAS  Google Scholar 

  • Xu JG, Johnson RL (1995) Root growth, microbial activity and phosphatase activity in oil-contaminated, remediated and uncontaminated soils planted to barley and field pea. Plant Soil 173:3–10

    Article  CAS  Google Scholar 

  • Yadav RS, Tarafdar JC (2003) Phytase and phosphatase producing fungi in arid and semi-arid soils and their efficiency in hydrolyzing different organic P compounds. Soil Biol Biochem 35(6):745–751

    Article  CAS  Google Scholar 

  • Yadav BK, Tarafdar JC (2004) Phytase activity in the rhizosphere of crops, trees and grasses under arid environment. J Arid Environ 58:285–293

    Article  Google Scholar 

  • Yadav BK, Tarafdar JC (2007a) Availability of unavailable phosphate compounds as a phosphorus source for clusterbean (Cyamopsis tetragonoloba (L.) Taub.) through the activity of phosphatase and phytase produced by actinomycetes. J Arid Legum 4:110–116

    Google Scholar 

  • Yadav BK, Tarafdar JC (2007b) Ability of Emericella rugulosa to mobilize unavailable P compounds during Pearl millet [Pennisetum glaucum (L.) R. Br.] crop under arid condition. Indian J Microbiol 47:57–63

    Article  CAS  Google Scholar 

  • Yip W, Wang L, Cheng C, Wu W, Lung S, Lim BL (2003) The introduction of a phytase gene from Bacillus subtilis improved the growth performance of transgenic tobacco. Biochem Biophys Res Commun 310:1148–1154

    Article  PubMed  CAS  Google Scholar 

  • Zhang ZB, Kornegay ET, Radcliffe JS, Denbow DM, Veit HP, Larsen CT (2000) Comparison of genetically engineered microbial and plant phytase for young broilers. Poult Sci 79:709–717

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bijender Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, B., Satyanarayana, T. Microbial phytases in phosphorus acquisition and plant growth promotion. Physiol Mol Biol Plants 17, 93–103 (2011). https://doi.org/10.1007/s12298-011-0062-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-011-0062-x

Keywords

Navigation