Skip to main content

Advertisement

Log in

Improvement of drought tolerance of soybean plants by using methyl jasmonate

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

Methyl jasmonate (MeJA) is a naturally occurring plant growth regulator and play vital roles in plant defense and many developmental processes such as root growth and seed germination. This study was undertaken to study the possible role of using methyl jasmonate to alleviate the adverse effect of water stress on soybean genotypes (Giza 22 and 35). The results showed that water stress reduced shoot length, fresh and dry weights of shoot and root, photosynthetic pigments, relative water content and oil content in the shoots of all soybean genotypes. On the other hand, there was a considerable increase in cell wall fractionation, saturated and unsaturated fatty acids, flavonoids, phenolic acid and sugar fraction content in the shoots of the soybean genotypes in response to the water stress. Foliar spray with methyl jasmonate increased all the above parameters as compared to stressed plants. The results investigate the important role of MeJA in alleviation of water stress in soybean plants and suggest that MeJA could be used for improving plant growth under water stress as a potential growth regulator. The soybean genotypes Giza 22 was found to be more resistant to water stress than Giza 35.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abass SM, Mohamed HI (2011) Alleviation of adverse effects of drought stress on common bean (Phaseolus vulgaris L.) by exogenous application of hydrogen peroxide. Bangladesh J Bot 41:75–83

    Google Scholar 

  • Abdelgawad ZA, Khalafaallah AA, Abdallah MM (2014) Impact of methyl jasmonate on antioxidant activity and some biochemical aspects of maize plant grown under water stress condition. Agric Sci 5:1077–1088

    CAS  Google Scholar 

  • Allen RD (1995) Dissection of oxidative stress tolerance using transgenic plants. Plant Physiol 107:1049–1054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Palsan M, Boydak E, Hayta M, Gercek S, Simsek M (2001) Effect of row space and irrigation on seed composition of Turkish sesame. J Crop Sci 78:933–935

    Google Scholar 

  • Anjum SA, Xie X, Wang L, Saleem MF, Man C, Lei W (2011) Morphological, physiological and biochemical responses of plants to drought stress. Afr J Agric Res 6(9):2026–2032

    Google Scholar 

  • AOAC (2000) Official methods of analysis, vol I, 17th edn. Association of Official Analytical Chemists, Inc., Maryland

    Google Scholar 

  • Ashraf M, Harris PJC (2013) Photosynthesis under stressful environments: an overview. Photosynthetica 51(2):163–190

    Article  CAS  Google Scholar 

  • Asma M, Lingakumar K (2015) Jasmonate foliar spray induced vegetative growth and pigment composition in Vigna Radiata L. WILCZEK. Int J Adv Res 3(1):664–669

    Google Scholar 

  • Avanci NC, Luche DD, Goldman GH, Goldman MHS (2010) Jasmonates are phytohormones with multiple functions, including plant defense and reproduction. Genet Mol Res 9:484–505

    Article  CAS  PubMed  Google Scholar 

  • Ayaz FA, Kadioglu AR, Turgut R (1999) Water stress effects on the content of low molecular weight carbohydrates and phenolic acids in Ctenanthe setosa (Rosc.) Eichler. Can J Plant Sci 80:373–378

    Article  Google Scholar 

  • Bâatour O, Mahmoudi H, Tarchoun I, Nasri N, Kaddour R, Zaghdoudi M, Wissal A, Hamdaoui G, Lachaâl M, Marzouk B (2012) Salt effect on phenolics and antioxidant activities of Tunisian and Canadian sweet marjoram (Origanum majorana L.) shoots. J Sci Food Agric 93(1):134–141

    Article  PubMed  Google Scholar 

  • Bartolozzi F, Bertazza G, Bassi D, Cristoferi G (1997) Simultaneous determination of soluble sugars and organic acids as their trimethylsilyl derivatives in apricot fruits by gas–liquid chromatography. J Chromatogr A 758:99–107

    Article  PubMed  Google Scholar 

  • Bellaloui N, Mengistu A, Fisher DK, Abel CA (2012) Soybean seed composition as affected by drought and phomopsis in phomopsis susceptible and resistant genotypes. J Crop Improv 26(3):428–453

    Article  CAS  Google Scholar 

  • Bellaloui N, Mengistu A, Kassem A (2013) Effects of genetics and environment on fatty acid stability in soybean seed. Food Nutr Sci 4:165–175

    Article  CAS  Google Scholar 

  • Blum U, Shafer SR, Lehman ME (1999) Evidence for inhibitory allelopathic interactions involving phenolic acids in field soils: concepts vs. an experimental model. Crit Rev Plant Sci 18:673–693

    Article  CAS  Google Scholar 

  • Bohnert HJ, Nelson DE, Jensen RG (1995) Adaptations to environmental stresses. Plant Cell 7:1099–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boussadia O, Bchir A, Steppe K, Van Labeke MC, Lemeur R, Braham M (2013) Active and passive osmotic adjustment in olive tree leaves during drought stress. Eur Sci J 9(24):423–439

    Google Scholar 

  • Caldwell CR, Britz SJ, Mirecki RM (2005) Effect of temperature, elevated carbon dioxide, and drought during seed development on the isoflavone content of dwarf soybean [Glycine max (L.) Merrill] grown in controlled environments. J Agric Food Chem 53:1125–1129

    Article  CAS  PubMed  Google Scholar 

  • Chimenti CA, Marcantonio M, Hall AJ (2006) Divergent selection for osmotic adjustment results in improved drought tolerance in maize (Zea mays L.) in both early growth and flowering phases. Field Crops Res 95:305–315

    Article  Google Scholar 

  • Czapski J, Horbowicz M, Saniewski M (1992) The effect of methyl jasmonate on free fatty acids content in ripening tomato fruits. Biol Plant 34:71–76

    Article  CAS  Google Scholar 

  • Delfine S, Tognettir R, Loreto F, Alvino A (2002) Physiological and growth responses to water stress in field grown bell pepper (Capsicum annuum L.). J Hortic Sci Biotechnol 77(6):697–704

    Article  CAS  Google Scholar 

  • Denness L, McKenna JF, Segonzac C, Wormit A, Madhou P, Bennett M, Mansfield J, Zipfel C, Hamann T (2011) Cell wall damage-induced lignin biosynthesis is regulated by a ROS and jasmonic acid dependent process in Arabidopsis thaliana. Plant Physiol 156:1364–1374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dever JE Jr, Bandurski RS, Kivilaan A (1968) Partial chemical characterization of corn root cell walls. Plant Physiol 43:50–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dixon RA, Paiva NL (1995) Stress induced phenylpropanoid metabolism. Plant Cell 7:1085–1097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fischer C, Höll W (1991) Food reserves of Scots pine (Pinus sylvestris L.). I. Seasonal changes in the carbohydrate and fat reserves of pine needles. Trees 5:187–195

    Article  Google Scholar 

  • Gadallah MAA (2000) Effects of indole-3-acetic acid and zinc on the growth, osmotic potential and soluble carbon and nitrogen components of soybean plants growing under water deficit. J Arid Environ 44:451–467

    Article  Google Scholar 

  • Galbraith DW, Shields BA (1981) Analysis of the initial stages of plant protoplast development using 33258 Hoechst: re-activation of the cell cycle. Physiol Plant 51:380–386

    Article  CAS  Google Scholar 

  • Gao W, Hillwig ML, Huang L, Cui G, Wang X, Kong J, Yang B, Peters RJ (2009) A functional genomics approach to tanshinone biosynthesis provides stereochemical insights. Org Lett 11:5170–5173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glass RL (1971) Alcoholysis, saponification and the preparation of fatty acid methyl esters. Lipids 6(12):919–925

    Article  CAS  Google Scholar 

  • Goldhaber-Pasillas GD, Mustafa NR, Erpoorte RV (2014) Jasmonic acid effect on the fatty acid and terpenoid indole alkaloid accumulation in cell suspension cultures of Catharanthus roseus. Molecules 19:10242–10260

    Article  PubMed  Google Scholar 

  • Gomez KA, Gomez AA (1984) Statistical procedures for agricultural research. Wiley, Singapore, p 680

    Google Scholar 

  • González A, Ayerbe L (2010) Effect of terminal water stress on leaf epicuticular wax load, residual transpiration and grain yield in barley. Euphytica 172:341–349

    Article  Google Scholar 

  • Goupy P, Hugues M, Biovin P, Amiot MJ (1999) Antioxidant composition and activity of barley (Hordeum Vulgare) and malt extracts and of isolated phenolic compounds. J Sci Food Agric 79:1625–1634

    Article  CAS  Google Scholar 

  • Gumerova EA, Akulov AN, Rumyantseva NI (2015) Effect of methyl jasmonate on growth characteristics and accumulation of phenolic compounds in suspension culture of Tartary Buckwheat. Russ J Plant Physiol 62(2):195–203

    Article  CAS  Google Scholar 

  • Hayat S, Ali B, Hasan SA, Ahmad A (2007) Brassinosteroid enhanced the level of antioxidants under cadmium stress in Brassica juncea. Environ Exp Bot 60:33–41

    Article  CAS  Google Scholar 

  • Hirabayashi J (1996) On the origin of elementary hexoses. Q Rev Biol 71:365–380

    Article  CAS  PubMed  Google Scholar 

  • Hura T, Hura K, Grzesiak S (2009) Leaf dehydration induces different content of phenolics and ferulic acid in drought resistant and sensitive genotypes of spring triticale. Zeitschrift für Naturforschung 64c:85–95

    Google Scholar 

  • Jaleel CA, Gopi R, Sankar B, Gomathinayagam M, Panneerselvam R (2008) Differential responses in water use efficiency in two varieties of Catharanthus roseus under drought stress. C R Biol 331:42–47

    Article  PubMed  Google Scholar 

  • Jie Z, Yuncong Y, Streeter JG, Ferree DC (2010) Influence of soil drought stress on photosynthesis, carbohydrates and the nitrogen and phophorus absorb in different section of leaves and stem of Fugi/M.9EML, a young apple seedling. Afr J Biotechnol 9:5320–5325

    Google Scholar 

  • Kar M, Mishra D (1976) Catalase, peroxidase, and polyphenoloxidase activities during rice leaf senescence. Plant Physiol 57:315–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karami A, Shahbazi M, Niknam V, Shobbar Z, Tafreshi R, Abedini R, Mabood H (2013) Expression analysis of dehydrin multigene family across tolerant and susceptible barley (Hordeum vulgare L.) genotypes in response to terminal drought stress. Acta Physiol Plant 35(7):2289–2297

    Article  CAS  Google Scholar 

  • Katerji N, Vanhoorn JW, Hamdy A, Mastrorilli M, Mou Karzel E (1997) Osmotic adjustment of sugar beets in response to soil salinity and its influence on stomatal conductance, growth and yield. Agric Water Manag 34:57–69

    Article  Google Scholar 

  • Kaur H, Sharma P, Sirhindi G (2013) Sugar accumulation and its regulation by jasmonic acid in Brassica napus L. under salt stress. J Stress Physiol Biochem 9(4):53–64

    Google Scholar 

  • Ketabchi S, Shahrtash M (2011) Effects of methyl Jasmonate and cytokinin on biochemical responses of maize seedlings infected by Fusarium moniliforme. Asian J Exp Biol Sci 2:299–305

    CAS  Google Scholar 

  • Kim HJ, Fonseca JM, Choi JH, Kubota C (2007) Effect of methyl jasmonate on phenolic compounds and carotenoids of romaine lettuce (Lactuca sativa L.). J Agric Food Chem 55(25):10366–10372

    Article  CAS  PubMed  Google Scholar 

  • Knox JP, Dodge AD (1985) Singlet oxygen and plants. Phytochemistry 24:889–896

    Article  CAS  Google Scholar 

  • Kovac M, Ravnikar M (1994) The effect of jasmonic acid on the photosynthetic pigments of potato plant grown in vitro. Plant Sci 103:11–17

    Article  CAS  Google Scholar 

  • Kumar A, John MM, Gul MZ, Bimolata W, Ghazi IA (2011) International conference on food engineering and biotechnology. IPCBEE. IACSIT Press, Singapore; Differential responses of non-enzymatic antioxidative system under water deficit condition in Rice (Oryza sativa L.). pp 176–179

  • Laribi B, Bettaieb I, Kouki K, Sahli A, Mougou A, Marzouk B (2009) Water deficit effects on caraway (Carum carvi L.) growth, essential oil and fatty acid composition. Ind Crops Prod 30:372–379

    Article  CAS  Google Scholar 

  • Lee BR, Kim KY, Jung WJ, Avice JC, Ourry A, Kim TH (2007) Peroxidases and lignification in relation to the intensity of water-deficit stress in white clover (Trifolium repens L.). J Exp Bot 58(6):1271–1279

    Article  CAS  PubMed  Google Scholar 

  • Maestri DM, Labuckas DO, Guzman CA, Giorda LM (1998) Correlation between seed size, protein and oil contents and fatty acid composition in soybean genotypes. Grasas Aceites 49:450–453

    Article  CAS  Google Scholar 

  • Maltas E, Dageri N, Vurral C, Yildiz S (2011) Biochemical and molecular analysis of soybean seed from turkey. J Med Plants Res 5:1575–1581

    CAS  Google Scholar 

  • Mandal S (2010) Induction of phenolics, lignin and key defense enzymes in eggplant (Solanum melongena L.) roots in response to elicitors. African. J Biotechnol 9(47):8038–8047

    CAS  Google Scholar 

  • Mattila K, Asikainen S, Wolf J, Jousimies-Somer H, Valtonen V, Nieminen M (2000) Age, dental infections, and coronary heart disease. J Dental Res 79:756–760

    Article  CAS  Google Scholar 

  • Mohamed HI, Akladious SA (2014) Influence of garlic extract on enzymatic and non enzymatic antioxidants in soybean plants (Glycine max) grown under drought stress. Life Sci J 11(3s):46–58

    Google Scholar 

  • Moura JC, Bonine MS, de Oliveira Fernandes Viana J, Dornelas MC, Mazzafera P (2010) Abiotic and biotic stresses and changes in the lignin content and composition in plants. J Integr Plant Biol 52:360–376

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Murkute AA, Sharma S, Singh SK (2006) Studies on salt stress tolerance of citrus rootstock genotypes with arbuscular mycorrhizal fungi. Hortic Sci 33:70–76

    Google Scholar 

  • Navarro JM, Flores P, Garrido C, Martinez V (2006) Changes in the contents of antioxidants compounds in pepper fruits at different ripening stages, as affected by salinity. Food Chem 96:66–73

    Article  CAS  Google Scholar 

  • Pazirandeh MS, Hasanloo T, Shahbazi M, Niknam V, Moradi-Payam A (2015) Effect of methyl jasmonate in alleviating adversities of water stress in barley genotypes. Int J Farm Allied Sci 4(2):111–118

    Google Scholar 

  • Petcu E, Arsintescu A, Stanciu D (2001) The effect of drought stress on fatty acid composition in some romanian sunflower hybrids. Rom Agri Res 15:39–43

    Google Scholar 

  • Petridis A, Therios I, Samouris G, Tananaki C (2012) Salinity induced changes in phenolic compounds in leaves and roots of four olive cultivars (Olea europaea L.) and their relationship to antioxidant activity. Environ Exp Bot 79:37–43

    Article  CAS  Google Scholar 

  • Rhee Y, Hlousek-Radojcic A, Ponsamuel J, Liu D, Beitenmiller D (1998) Epicuticular wax accumulation and fatty acids elongation activities are induced during leaf development. Plant Physiol 116:901–911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ricardi MM, Gonzalez RM, Zhong S, Dominguez PG, Duffy T, Turjanski PG, Salter JDS, Alleva K, Carrari F, Giovannoni JJ (2014) Genome-wide data (ChIP-seq) enabled identification of cell wall-related and aquaporin genes as targets of tomato ASR1, a drought stress-responsive transcription factor. BMC Plant Biol 14(29):1–14

    Google Scholar 

  • Sabater B, Rodriguez MI (1978) Control of chlorophyll degradation in detached leaves of barley and oat through effect of kinetin on chlorophyllase levels. Physiol Plant 43:274–276

    Article  CAS  Google Scholar 

  • Salem N, Msaada K, Dhifi W, Sriti J, Mejri H, Limam F, Marzouk B (2014) Effect of drought on safflower natural dyes and their biological activities. EXCLI J 13:1–18

    PubMed  PubMed Central  Google Scholar 

  • Sampietro DA, Vattuone MA, Isla MI (2006) Plant growth inhibitors isolated from sugarcane (Saccharum officinarum) straw. J Plant Physiol 163:837–846

    Article  CAS  PubMed  Google Scholar 

  • Shalhevet J (1993) Plants under salt and water stress. In: Fowden L, Mansfield T, Stoddart J (eds) Plant adaptation to environmental stress. Chapman and Hall, London, pp 133–154

    Google Scholar 

  • Shen B, Jensen RG, Bohnert HJ (1997) Mannitol protects against oxidation by hydroxyl radicals. Plant Physiol 115:527–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheng M, Tang M, Chan H, Yang B, Zhang F, Huang Y (2008) Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza 18:287–296

    Article  CAS  PubMed  Google Scholar 

  • Shimshi D, Mayokal ML, Atsmon D (1982) Responses to water stress in wheat and related wild species. Crop Sci 22(123–1):28

    Google Scholar 

  • Sickler CM, Edwards GE, Kiirats O, Gao Z, Loescher W (2007) Response of mannitol-producing Arabidopsis thaliana to abiotic stress. Funct Plant Biol 34:382–391

    Article  CAS  Google Scholar 

  • Stymne S, Appelqvist LA (1978) The biosynthesis of linoleate from oleoyl-coa via oleoylphosphatidylcholine in microsomes of developing safflower seeds. Eur J Biochem 90:223–229

    Article  CAS  PubMed  Google Scholar 

  • Tattini M, Gucci R, Romani A, Baldi A, Everaro JD (1996) Changes in non-structural carbohydrates in olive leaves (Olea europaea) during root zone salinity stress. Physiol Plant 98:117–124

    Article  CAS  Google Scholar 

  • Vernon LP, Seely GR (1966) The chlorophylls. Academic Press, New York

    Google Scholar 

  • Wakabayashi K, Hoson T, Kamisaka S (1997) Osmotic stress suppresses cell wall stiffening and the increase in cell wall bound ferulic and diferulic acids in wheat coleoptiles. Plant Physiol 113:967–973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walia H, Wilson C, Condamine P, Liu X, Ismail AM, Close TJ (2007) Large-scale expression profiling and physiological characterization of jasmonic acid-mediated adaptation of barley to salinity stress. Plant Cell Environ 30:410–421

    Article  CAS  PubMed  Google Scholar 

  • Wang WX, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Chantreau M, Sibout R, Hawkins S (2013) Plant cell wall lignification and monolignol metabolism. Front Plant Sci 4(220):1–14

    Google Scholar 

  • Weidner S, Karolak M, Karamać M, Kosińska A, Amarowicz R (2009) Phenolic compounds and properties of antioxidants in grapevine roots (Vitis vinifera L.) under drought stress followed by recovery. Acta Soc Bot Pol 78:97–103

    Article  CAS  Google Scholar 

  • Wildermuth MC (2006) Variations on a theme: synthesis and modification of plant benzoic acids. Curr Opin Plant Biol 9:288–296

    Article  CAS  PubMed  Google Scholar 

  • Wilson RF (2004) Seed composition. In: Boerma H, Specht JE (eds) Soybeans: improvement, production, and uses, 3rd edn. ASA, CSSA, and SSSA, Madison, pp 621–668

    Google Scholar 

  • Yan Y, Borrego E, Kolomiets MV (2013) Jasmonate biosynthesis, perception and function in plant development and stress responses, chap 16. In: Baez RV (ed) Lipid metabolism. In Tech, Rijeka, pp 393–442

    Google Scholar 

  • Yancey PH, Clark ME, Hand SC, Bowlus RD, Somero GN (1982) Living with water stress: evolution of osmolyte systems. Science 217(4566):1214–1222

    Article  CAS  PubMed  Google Scholar 

  • Yasseen BT, Jurjee JA, Sofajy SA (1987) Changes in some growth processes induced by NaCl in individual leaves of two barley cultivars. Indian J Plant Physiol 30:1–6

    CAS  Google Scholar 

  • Ying YQ, Song LL, Jacobs DF, Mei L, Liu P, Jin SH, Wu JS (2015) Physiological response to drought stress in Camptotheca acuminata seedlings from two provenances. Front Plant Sci 6(361):1–8

    Google Scholar 

  • Yordanov I, Velikova V, Tsonev T (2000) Plant responses to drought, acclimation and stress tolerance. Photosynthetica 38:171–186

    Article  CAS  Google Scholar 

  • Zhong D, Du H, Wang Z (2011) Genotypic variation in fatty acid composition and unsaturation levels in bermudagrass associated with leaf dehydration tolerance. J Am Soc Hortic Sci 136(1):35–40

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heba Ibrahim Mohamed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohamed, H.I., Latif, H.H. Improvement of drought tolerance of soybean plants by using methyl jasmonate. Physiol Mol Biol Plants 23, 545–556 (2017). https://doi.org/10.1007/s12298-017-0451-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-017-0451-x

Keywords

Navigation