Skip to main content

Advertisement

Log in

Impact of melatonin and tryptophan on water stress tolerance in white lupine (Lupinus termis L.)

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

Melatonin  has been identified as a signal molecule that regulates plant responses to different abiotic and biotic stresses. Melatonin (MT) and its precursor tryptophan (Try) have a major role in improving plant stress tolerance to different environmental stresses such as water deficiency. The rapid increase in the Egyptian population caused insufficient protein sources, especially those of animal origin, in their diet. The possible solution is to augment the diet with legumes such as white lupine which are relatively rich in protein. Thus, the current experimental work was carried out to find changes in growth, biochemical aspects and yield quantity and quality of white lupine plant with spraying of both MT and Try at different concentrations on plant shoot under water deficit stress conditions. Results showed that water deficit (75 or 50% of water irrigation requirements; WIR) caused significant reduction in growth, photosynthetic pigments, indole acetic acid and yield compared with those received 100% WIR. Seed yield significantly decreased (p < 0.05) by 26.98 and 41.64% by decreasing WIR to 75 and 50%. The decrease was accompanied by significant increase in phenolic contents, hydrogen peroxide, lipid peroxidation and some antioxidant enzymes, while nitrate reductase enzyme was decreased. However, external application of either MT or Try significantly alleviated the adverse effects of water deficit (growth suppression), since MT or Try-treated plants recovered more quickly than untreated plants. Moreover, MT or Try—treated plants had higher photosynthetic pigments, indole acetic acid, phenolic, as well as yield quantity and quality under the three WIR as compared with untreated plants. Melatonin treatment at 100 µM and Tryptophan at 200 µM increased weight of seeds/plant by 78.29 and 52.19%, 71.49 and 43.78% and 41.21 and 13.07% in plants irrigated with 100, 75 and 50% WIR, respectively. Exogenous MT and Try significantly reduced hydrogen peroxide and malondialdehyde content, while markedly increased the activities of antioxidant enzymes and nitrate reductase under different WIR. Finally, the current study concluded that MT and Try treatments alleviated the detrimental effects of water deficiency and accelerated the recovery mainly via improving white lupine plants tolerance in forms of enhancing photosynthetic pigments, indole acetic acid, phenolic and antioxidant capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

WIR:

Water irrigation requirements

MT:

Melatonin

Try:

Tryptophan

IAA:

Indole acetic acid

CAT:

Catalase

SOD:

Superoxide dismutase

POX:

Peroxidase

NR:

Nitrate reductase

MDA:

Malondialdehyde

TCH:

Total carbohydrate

References

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mervat Shamoon Sadak.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadak, M.S., Ramadan, A.A.EM. Impact of melatonin and tryptophan on water stress tolerance in white lupine (Lupinus termis L.). Physiol Mol Biol Plants 27, 469–481 (2021). https://doi.org/10.1007/s12298-021-00958-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-021-00958-8

Keywords

Navigation