Skip to main content
Log in

Characterization of Cellulose Nanocrystals Extracted from Sugarcane Bagasse for Potential Biomedical Materials

  • Research article
  • Published:
Sugar Tech Aims and scope Submit manuscript

Abstract

Cellulose nanocrystals (CNCs) were extracted by sulfuric acid from cellulose purified via an environmentally friendly method. In this study, cellulose obtained from sugarcane bagasse (SCB) using steam-exploded and enzyme-treated pretreatment was confirmed using chemical composition analysis to have a 92.59 ± 0.12 whiteness index and 87% α-cellulose content. The morphology of extracted CNCs, characterized using atomic force microscopy images, transmission electron microscopy images and energy-dispersive x-rays, showed the diameter and length were in the ranges 9.8 ± 6.3 and 280.1 ± 73.3 nm, respectively, with an expected ratio (L/d) of 20–25 and a low concentration of sulfate (0.2%) on surface particles. Moreover, fourier transformed infrared spectroscopy and X-ray diffraction results demonstrated free noncellulosic contents and an improved crystallinity for CNCs, respectively. A decrease in the thermal stability of CNCs was examined by thermogravimetric analysis, and no evidence of cytotoxicity in the CNCs was obtained. The isolated CNCs from SCB may be considered as a potential biomedical material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abraham, E., B. Deepa, L.A. Pothan, M. Jacob, S. Thomas, U. Cvelbar, and R. Anandjiwala. 2011. Extraction of nanocellulose fibrils from lignocellulosic fibres: A novel approach. Carbohydrate Polymers 86 (4): 1468–1475. doi:10.1016/j.carbpol.2011.06.034.

    Article  CAS  Google Scholar 

  • Alemdar, Ayse, and Mohini Sain. 2008. Biocomposites from wheat straw nanofibers: Morphology, thermal and mechanical properties. Composites Science and Technology 68 (2): 557–565. doi:10.1016/j.compscitech.2007.05.044.

    Article  CAS  Google Scholar 

  • Bhattacharya, Deepanjan, Louis T. Germinario, and William T. Winter. 2008. Isolation, preparation and characterization of cellulose microfibers obtained from bagasse. Carbohydrate Polymers 73 (3): 371–377. doi:10.1016/j.carbpol.2007.12.005.

    Article  CAS  Google Scholar 

  • Brinchi, L., F. Cotana, E. Fortunati, and J.M. Kenny. 2013. Production of nanocrystalline cellulose from lignocellulosic biomass: Technology and applications. Carbohydrate Polymers 94 (1): 154–169. doi:10.1016/j.carbpol.2013.01.033.

    Article  CAS  PubMed  Google Scholar 

  • Chen, Wenshuai, Yu. Haipeng, Yixing Liu, Peng Chen, Mingxin Zhang, and Yunfei Hai. 2011. Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydrate Polymers 83 (4): 1804–1811. doi:10.1016/j.carbpol.2010.10.040.

    Article  CAS  Google Scholar 

  • Dong, S., A.A. Hirani, K.R. Colacino, Y.W. Lee, and M. Roman. 2012. Cytotoxicity and cellular uptake of cellulose nanocrystals. Nano Life 02 (03): 124106. doi:10.1142/S1793984412410061.

    Article  Google Scholar 

  • Dri, Fernando L., Louis G. Hector, Robert J. Moon, and Pablo D. Zavattieri. 2013. Anisotropy of the elastic properties of crystalline cellulose Iβ from first principles density functional theory with Van Der Waals interactions. Cellulose 20 (6): 2703–2718. doi:10.1007/s10570-013-0071-8.

    Article  CAS  Google Scholar 

  • Eichhorn, S.J., A. Dufresne, M. Aranguren, N.E. Marcovich, J.R. Capadona, S.J. Rowan, C. Weder, et al. 2010. Review: Current international research into cellulose nanofibres and nanocomposites. Journal of Materials Science 45 (1): 1–33. doi:10.1007/s10853-009-3874-0.

    Article  CAS  Google Scholar 

  • Elanthikkal, Silviya, Unnikrishnan Gopalakrishnapanicker, Soney Varghese, and James T. Guthrie. 2010. Cellulose microfibres produced from banana plant wastes: Isolation and characterization. Carbohydrate Polymers 80 (3): 852–859. doi:10.1016/j.carbpol.2009.12.043.

    Article  CAS  Google Scholar 

  • George, Johnsy, V.A. Sajeevkumar, R. Kumar, K.V. Ramana, S.N. Sabapathy, and A.S. Bawa. 2008. Enhancement of thermal stability associated with the chemical treatment of bacterial (Gluconacetobacter xylinus) cellulose. Journal of Applied Polymer Science 108 (3): 1845–1851. doi:10.1002/app.27802.

    Article  CAS  Google Scholar 

  • Gilbert, R.D., and J.F. Kadla. 2000. Polysaccharides-cellulose. In Biopolymers from renewable resources. Macromolecular systems—material approach, ed. D. Kaplan, 47–90. Berlin, Heidelberg: Springer.

    Google Scholar 

  • Kargarzadeh, Hanieh, Ishak Ahmad, Ibrahim Abdullah, Alain Dufresne, Siti Yasmine Zainudin, and Rasha M. Sheltami. 2012. Effects of hydrolysis conditions on the morphology, crystallinity, and thermal stability of cellulose nanocrystals extracted from kenaf bast fibers. Cellulose 19 (3): 855–866. doi:10.1007/s10570-012-9684-6.

    Article  CAS  Google Scholar 

  • Khalil, H.P.S.A., H. Ismail, H.D. Rozman, and M.N. Ahmad. 2001. The effect of acetylation on interfacial shear strength between plant fibres and various matrices. European Polymer Journal 37 (5): 1037–1045. doi:10.1016/s0014-3057(00)00199-3.

    Article  CAS  Google Scholar 

  • Kim, D.H., and Y.S. Song. 2015. Anisotropic optical film embedded with cellulose nanowhisker. Carbohydrate Polymers 130: 448–454. doi:10.1016/j.carbpol.2015.05.033.

    Article  CAS  PubMed  Google Scholar 

  • Kirdponpattara, S., A. Khamkeaw, N. Sanchavanakit, P. Pavasant, and M. Phisalaphong. 2015. Structural modification and characterization of bacterial cellulose-alginate composite scaffolds for tissue engineering. Carbohydrate Polymers 132: 146–155. doi:10.1016/j.carbpol.2015.06.059.

    Article  CAS  PubMed  Google Scholar 

  • Klemm, Dieter, Brigitte Heublein, Hans-Peter Fink, and Andreas Bohn. 2005. Cellulose: Fascinating biopolymer and sustainable raw material. Angewandte Chemie International Edition 44 (22): 3358–3393. doi:10.1002/anie.200460587.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, Anuj, Yuvraj Singh Negi, Nishi Kant Bhardwaj, and Veena Choudhary. 2012. Synthesis and characterization of methylcellulose/PVA based porous composite. Carbohydrate Polymers 88 (4): 1364–1372. doi:10.1016/j.carbpol.2012.02.019.

    Article  CAS  Google Scholar 

  • Kumar, Anuj, YuvrajSingh Negi, Veena Choudhary, and NishiKant Bhardwaj. 2014. Microstructural and mechanical properties of porous biocomposite scaffolds based on polyvinyl alcohol. Nano-Hydroxyapatite and Cellulose Nanocrystals. Cellulose 21 (5): 3409–3426. doi:10.1007/s10570-014-0339-7.

    CAS  Google Scholar 

  • Kuzmenko, Volodymyr, Theodoros Kalogeropoulos, Johannes Thunberg, Sara Johannesson, Daniel Hägg, Peter Enoksson, and Paul Gatenholm. 2016. Enhanced growth of neural networks on conductive cellulose-derived nanofibrous scaffolds. Materials Science and Engineering, C: Materials for Biological Applications 58: 14–23. doi:10.1016/j.msec.2015.08.012.

    Article  CAS  PubMed  Google Scholar 

  • Le Troedec, Marianne, David Sedan, Claire Peyratout, Jean Pierre Bonnet, Agnès Smith, René Guinebretiere, Vincent Gloaguen, and Pierre Krausz. 2008. Influence of various chemical treatments on the composition and structure of hemp fibres. Composites Part A Applied Science and Manufacturing 39 (3): 514–522. doi:10.1016/j.compositesa.2007.12.001.

    Article  Google Scholar 

  • Li, M., L.J. Wang, D. Li, Y.L. Cheng, and B. Adhikari. 2014. Preparation and characterization of cellulose nanofibers from de-pectinated sugar beet pulp. Carbohydrate Polymers 102: 136–143. doi:10.1016/j.carbpol.2013.11.021.

    Article  CAS  PubMed  Google Scholar 

  • Male, Keith B., Alfred C.W. Leung, Johnny Montes, Amine Kamen, and John H.T. Luong. 2012. Probing inhibitory effects of nanocrystalline cellulose: Inhibition versus surface charge. Nanoscale 4 (4): 1373–1379. doi:10.1039/C2NR11886F.

    Article  CAS  PubMed  Google Scholar 

  • Mandal, A., and D. Chakrabarty. 2011. Isolation of nanocellulose from waste sugarcane bagasse (scb) and its characterization. Carbohydrate Polymers 86 (3): 1291–1299. doi:10.1016/j.carbpol.2011.06.030.

    Article  CAS  Google Scholar 

  • Mariano, Marcos, Nadia El Kissi, and Alain Dufresne. 2014. Cellulose nanocrystals and related nanocomposites: Review of some properties and challenges. Journal of Polymer Science Part B: Polymer Physics 52 (12): 791–806. doi:10.1002/polb.23490.

    Article  CAS  Google Scholar 

  • Marzieh, Shafiei, Kumar Rajeev, and Keikhosro Karimi. 2015. Pretreatment of lignocellulosic biomass. In Lignocellulose-based bioproducts, vol. 1, ed. K. Karimi, 85–154. Switzerland: Springer International Publishing.

    Google Scholar 

  • Petersson, L., and K. Oksman. 2006. Biopolymer based nanocomposites: Comparing layered silicates and microcrystalline cellulose as nanoreinforcement. Composites Science and Technology 66 (13): 2187–2196. doi:10.1016/j.compscitech.2005.12.010.

    Article  CAS  Google Scholar 

  • Ranby, B.G. 1949. Aqueous colloidal solutions of cellulose micelles. Acta Chemica Scandinavica 3: 649–650.

    Article  CAS  Google Scholar 

  • Rhim, J.W., Y. Wu, C.L. Weller, and M. Schnepf. 1999. Physical characteristics of a composite film of soy protein isolate and propyleneglycol alginate. Journal of Food Science 64 (1): 149–152. doi:10.1111/j.1365-2621.1999.tb09880.x.

    Article  CAS  Google Scholar 

  • Roman, Maren, and William T. Winter. 2004. Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules 5 (5): 1671–1677. doi:10.1021/bm034519+.

    Article  CAS  PubMed  Google Scholar 

  • Roncero, M.Blanca, Antonio L. Torres, Jos F. Colom, and Teresa Vidal. 2003. Effect of xylanase on ozone bleaching kinetics and properties of Eucalyptus kraft pulp. Journal of Chemical Technology and Biotechnology 78 (10): 1023–1031. doi:10.1002/jctb.893.

    Article  CAS  Google Scholar 

  • Rosa, M.F., E.S. Medeiros, J.A. Malmonge, K.S. Gregorski, D.F. Wood, L.H.C. Mattoso, G. Glenn, W.J. Orts, and S.H. Imam. 2010. Cellulose nanowhiskers from coconut husk fibers: Effect of preparation conditions on their thermal and morphological behavior. Carbohydrate Polymers 81 (1): 83–92. doi:10.1016/j.carbpol.2010.01.059.

    Article  CAS  Google Scholar 

  • Saelee, Kullasatri, Naiyasit Yingkamhaeng, Thidarat Nimchua, and Prakit Sukyai. 2016. An environmentally friendly xylanase-assisted pretreatment for cellulose nanofibrils isolation from sugarcane bagasse by high-pressure homogenization. Industrial Crops and Products 82: 149–160. doi:10.1016/j.indcrop.2015.11.064.

    Article  CAS  Google Scholar 

  • Samir, Azizi, My Ahmed Said, Fannie Alloin, Jean-Yves Sanchez, and Alain Dufresne. 2004. Cellulose nanocrystals reinforced poly(oxyethylene). Polymer 45 (12): 4149–4157. doi:10.1016/j.polymer.2004.03.094.

    Article  Google Scholar 

  • Segal, L., J.J. Creely, A.E. Jr Martin, and C.M. Conrad. 1962. An empirical method for estimating the degree of crystallinity of native cellulose using the x-ray diffractometer. Textile Research Journal 29: 786–794.

    Article  Google Scholar 

  • Šturcová, Adriana, Geoffrey R. Davies, and Stephen J. Eichhorn. 2005. Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromolecules 6 (2): 1055–1061. doi:10.1021/bm049291k.

    Article  PubMed  Google Scholar 

  • Sun, Ye, and Jiayang Cheng. 2002. Hydrolysis of lignocellulosic materials for ethanol production: A review. Bioresource Technology 83 (1): 1–11.

    Article  CAS  PubMed  Google Scholar 

  • Sun, J.X., X.F. Sun, R.C. Sun, and Y.Q. Su. 2004. Fractional extraction and structural characterization of sugarcane bagasse hemicelluloses. Carbohydrate Polymers 56 (2): 195–204. doi:10.1016/j.carbpol.2004.02.002.

    Article  CAS  Google Scholar 

  • Sun, X.F., F. Xu, R.C. Sun, P. Fowler, and M.S. Baird. 2005. Characteristics of degraded cellulose obtained from steam-exploded wheat straw. Carbohydrate Research 340 (1): 97–106. doi:10.1016/j.carres.2004.10.022.

    Article  CAS  PubMed  Google Scholar 

  • Teixeira, Eliangela de Morais, Ana Carolina Corrêa, Alexandra Manzoli, Fabio de Lima Leite, Cauê Ribeiro de Oliveira, and Luiz Henrique Capparelli Mattoso. 2010. Cellulose nanofibers from white and naturally colored cotton fibers. Cellulose 17 (3): 595–606. doi:10.1007/s10570-010-9403-0.

    Article  CAS  Google Scholar 

  • Teixeira, Eliangela, Thalita de Morais, Jessika Bondancia, Kelcilene Bruna Ricardo Teodoro, Ana Carolina Corrêa, José Manoel Marconcini, and Luiz Henrique Caparelli Mattoso. 2011. Sugarcane bagasse whiskers: Extraction and characterizations. Industrial Crops and Products 33 (1): 63–66. doi:10.1016/j.indcrop.2010.08.009.

    Article  Google Scholar 

  • Wang, Neng, Enyong Ding, and Rongshi Cheng. 2007. Thermal degradation behaviors of spherical cellulose nanocrystals with sulfate groups. Polymer 48 (12): 3486–3493. doi:10.1016/j.polymer.2007.03.062.

    Article  CAS  Google Scholar 

  • Wang, Wei-Ming, Zai-Sheng Cai, Yu. Jian-Yong, and Zhao-Peng Xia. 2010. Changes in composition, structure, and properties of jute fibers after chemical treatments. Fibers and Polymers 10 (6): 776–780. doi:10.1007/s12221-009-0776-3.

    Article  Google Scholar 

  • Wu, Xiawa, Robert J. Moon, and Ashlie Martini. 2012. Crystalline cellulose elastic modulus predicted by atomistic models of uniform deformation and nanoscale indentation. Cellulose 20 (1): 43–55. doi:10.1007/s10570-012-9823-0.

    Article  CAS  Google Scholar 

  • Zhang, L.H., D. Li, L.J. Wang, T.P. Wang, L. Zhang, X.D. Chen, and Z.H. Mao. 2008. Effect of steam explosion on biodegradation of lignin in wheat straw. Bioresource Technology 99 (17): 8512–8515. doi:10.1016/j.biortech.2008.03.028.

    Article  CAS  PubMed  Google Scholar 

  • Zheng, Yi, Jia Zhao, Xu Fuqing, and Yebo Li. 2014. Pretreatment of lignocellulosic biomass for enhanced biogas production. Progress in Energy and Combustion Science 42: 35–53. doi:10.1016/j.pecs.2014.01.001.

    Article  Google Scholar 

  • Zhou, Y.M. 2012. Effect of nanocellulose isolation techniques on the formation of reinforced poly(vinyl alcohol) nanocomposite films. Express Polymer Letters 6 (10): 794–804. doi:10.3144/expresspolymlett.2012.85.

    Article  CAS  Google Scholar 

  • Zhou, Chengjun, Qingfeng Shi, Weihong Guo, Lekeith Terrell, Ammar T. Qureshi, Daniel J. Hayes, and Wu Qinglin. 2013. Electrospun bio-nanocomposite scaffolds for bone tissue engineering by cellulose nanocrystals reinforcing maleic anhydride grafted PLA. ACS Applied Materials and Interfaces 5 (9): 3847–3854. doi:10.1021/am4005072.

    Article  CAS  PubMed  Google Scholar 

  • Zuluaga, Robin, Jean Luc Putaux, Javier Cruz, Juan Vélez, Iñaki Mondragon, and Piedad Gañán. 2009. Cellulose microfibrils from banana rachis: Effect of alkaline treatments on structural and morphological features. Carbohydrate Polymers 76 (1): 51–59. doi:10.1016/j.carbpol.2008.09.024.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Thailand Research Fund (TRF) for financial support, the Department of Biotechnology, Faculty of Agro-Industry and Kasetsart University, Thailand for supplying facilities, the Scholarship Program for International Graduate Students 2014; and the National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand for providing xylanase enzyme.

Funding

This study was funded by Thailand Research fund (Grant Number TRF5850012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prakit Sukyai.

Ethics declarations

Conflict of interest

All authors of this research paper declare that that have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lam, N.T., Chollakup, R., Smitthipong, W. et al. Characterization of Cellulose Nanocrystals Extracted from Sugarcane Bagasse for Potential Biomedical Materials. Sugar Tech 19, 539–552 (2017). https://doi.org/10.1007/s12355-016-0507-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12355-016-0507-1

Keywords

Navigation