Skip to main content
Log in

From local to global probabilistic modeling of concrete cracking

  • Original Article
  • Published:
Annals of Solid and Structural Mechanics

Abstract

The description of cracks in concrete is crucial when dealing with life expectancy of structures such as dams, nuclear power plants vessels, waste (nuclear or not) storage structures, tunnels, etc. The main objective is not only to describe the growth of a preexisting flaw, but also to predict the genesis and formation of cracks in an initially flaw-free structure (at least at the macroscopic level) subjected to tension. The presented paper provides a macroscopic model for tensile cracking (i.e., a model adequate for describing the behavior at the structure level), capable at the same time of providing information on the local response (i.e., cracks). The model takes into account scale effects as well as the heterogeneous nature of concrete via appropriate, experimentally validated, size effect laws and via a statistical distribution of mechanical properties. Results are provided and validated via a 2D comparison with an original experimental test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. Mean value and standard deviation.

References

  1. RFGC (2003) Modéles de fissuration du béton. Revue Francaise de Génie Civil

  2. Rossi P, Coussy O, Boulay C, Acker P, Malier Y (1986) Comparison between plain concrete toughness and steel fibre reinforced concrete toughness. Cem Concr Res 16:303–313

    Article  Google Scholar 

  3. Rossi P, Wu X, Le Maou F, Belloc A (1992) Effet d’échelle sur le comportement du béton en traction. BLPC 182:11–20

    Google Scholar 

  4. Rossi P, Wu X, Le Maou F, Belloc A (1994) Scale effect of concrete in tension. Mater Struct 27:437–444

    Article  Google Scholar 

  5. Torrenti J (1996) Comportement mécanique du béton -bilan de six années de recherche. LCPC, France

    Google Scholar 

  6. Rossi P (1998) Réflexions sur l’utilisation des modéles continus non linéaires pour la prise en compte de la fissuration des structures en béton. BLPC 217:85–89

    Article  Google Scholar 

  7. Boulay C, Dal Pont S, Belin P (2009) Real-time evolution of electrical resistance in cracking concrete. Cem Concr Res 39(9):825–831

    Article  Google Scholar 

  8. Rossi P, Wu X (1992) Probabilistic model for material behavior analysis and appraisement of concrete structures. Mag Concr Res 44:271–280

    Article  Google Scholar 

  9. Rossi P, Ulm F-J, Hachi F (1996) Compressive behavior of concrete: physical mechanisms and modeling. J Eng Mech 11:1038–1043

    Article  Google Scholar 

  10. Tailhan J, Rossi P, Dal Pont S (2008) Macroscopic probabilistic modelling of cracking processes in concrete structures. WCCM-ECCOMAS

  11. Bolander J, Saito S (1998) Fracture analysis using spring networks with random geometry. Eng Fract Mech 61:569–591

    Article  Google Scholar 

  12. Dal Pont S, Schrefler B, Ehrlacher A (2005) Intrinsic permeability evolution in high temperature concrete: an experimental and numerical analysis. Transp Porous Media 60(1):43–74

    Article  Google Scholar 

  13. Acker P, Boulay C, Rossi P (1987) On the importance of initial stresses in concrete and of the resulting mechanical effects. Cem Concr Res 17(5):755–764

    Google Scholar 

  14. Bazant Z (2000) Size effect. Int J Sol Struct 37(1–2):69–80

    Google Scholar 

  15. Humbert P (1989) Un code général de calcul par éléments finis. BLPC 160:112–116

    Google Scholar 

  16. Rossi P, Tailhan J-L, Lombart J, Deleurence A (2006) Modelling of the volume effects related to the uniaxial behaviour of concrete. In: Gdoutos EE (ed) Fracture of nano and engineering materials and structures, Springer, pp 1375–1376

  17. Fairbairn E, Guedes Q, Ulm J (1999) An inverse problem analysis for the determination of probalistic parameters of concrete behavior modeled by a statistical approach. Mater Struct 32:9–13

    Article  Google Scholar 

  18. Rice J, Rudnicki J (1980) A note on some features of the theory of localization of deformation. Int J Solids Struct 16:597–605

    Article  MATH  MathSciNet  Google Scholar 

  19. Bazant Z, Jirasek M (2002) Nonlocal integral formulations of plasticity and damage: survey of progress. J Eng Mech 128:1119–1149

    Google Scholar 

  20. Simo J, Hughes T (1987) General return mapping algorithms for rate independent plasticity. In: Desai CS et al (eds) Constitutive laws for engineering materials: theory and applications. Elsevier, Amsterdam, pp 221–231

    Google Scholar 

  21. Aldea C, Shah S, Karr A (1999) The permeability of cracked concrete. Mater Struct 32:370–376

    Article  Google Scholar 

  22. Boulay C, Dal Pont S, Delaplace A, Delahousse H, Tailhan J-L (2008) An experimental test for cracking concrete under controlled conditions. ICF12

  23. De Borst R (2002) Fracture in quasi brittle materials: a review of continuum damage-based approaches. Eng Fract Mech 69:95–112

    Article  Google Scholar 

  24. Mazars J (1984) Application de la mécanique de l’endommagement au comportement non-linéaire et la rupture du béton de structure, Ph.D. thesis, L.M.T.

  25. Rashid Y (1968) Analysis of prestressed concrete pressure vessels. Nucl Eng Des 7:334–344

    Article  Google Scholar 

  26. Bazant Z, Oh B (1983) Crack band theory for fracture of concrete. Mater Struct 16:155–177

    Google Scholar 

  27. Cosserat E, Cosserat F (1909) Théorie des corps déformables. Herman, Paris

    Google Scholar 

  28. Grioli G (1960) Elasticitá asimmetrica. Annali di matematica pura ed applicata (Ser.IV-50), pp 389–417

  29. Vervuurt A (1997) Interface fracture in concrete, Ph.D. thesis, TU Delft, The Netherlands

  30. Hillerborg A, Modeer M, Petersson P (1976) Analysis of crack formation and crack growth in concrete by means of fracture mechanics. Cem Concr Res 6:773–782

    Article  Google Scholar 

  31. Ingraffea A, Saouma V (1985) Numerical modelling of discrete crack propagation in reinforced and plain concrete. In: Sih GC, DiTommaso A (eds) Fracture mechanics of concrete: structural application and numerical calculation, Martinus Nijhoff, Dordrecht, pp 171–222

    Google Scholar 

  32. Belytschko T, Fish J, Engleman B (1988) A finite element with embedded localization zones. Comp Meth Appl Mech Eng 70(3):59–89

    Google Scholar 

  33. Dvorkin E, Cuitino A, Gioia G (1990) Finite element with displacement interpolated embedded localization lines insensitive to mesh size and distortions. Int J Numer Meth Eng 30(3):541–564

    Google Scholar 

  34. Babuska T, Melenk J (1997) The partition of unity method. Int J Numer Meth Eng 40:727–758

    Article  MATH  MathSciNet  Google Scholar 

  35. Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. Int J Numer Meth Eng 45(5):601–620

    Google Scholar 

  36. Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Meth Eng 46(1):131–150

    Google Scholar 

  37. Droz P (1987) Modéle numérique du comportement non-linéare d’ouvrages massifs en béton non armé, Ph.D. thesis, EPFL, Lausanne

  38. Alfaiate J, Simone A, Sluys L (2003) Non-homogeneous displacement jumps in strong embedded discontinuities. Int J Solids Struct 40(21):5799–5817

    Article  MATH  Google Scholar 

  39. Bazant Z, Planas J (1998) Fracture and size effect in concrete and other quasi-brittle materials. CRC press, Boca Raton

    Google Scholar 

  40. Jirasek M (2000) Comparative study on finite elements with embedded discontinuities. Comput Methods Appl Eng 188:307–330

    Article  MATH  Google Scholar 

  41. Rots J (1988) Computational modeling of concrete fracture, Ph.D. thesis. Delft University, Delft

  42. Jirasek M, Zimmermann T (1998) Analysis of rotating crack model. J Eng Mech 124:842–851

    Google Scholar 

  43. Sancho J, Planas J, Cendon D, Reyes E, Galvez J (2007) An embedded crack model for finite element analysis of concrete fracture. Eng Fract Mech 74:75–86

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.-L. Tailhan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tailhan, JL., Dal Pont, S. & Rossi, P. From local to global probabilistic modeling of concrete cracking. Ann. Solid Struct. Mech. 1, 103–115 (2010). https://doi.org/10.1007/s12356-010-0008-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12356-010-0008-y

Keywords

Navigation