Skip to main content
Erschienen in: International Journal of Social Robotics 4/2012

01.11.2012

Multi-resolution Corrective Demonstration for Efficient Task Execution and Refinement

verfasst von: Çetin Meriçli, Manuela Veloso, H. Levent Akın

Erschienen in: International Journal of Social Robotics | Ausgabe 4/2012

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Computationally efficient task execution is very important for autonomous mobile robots endowed with limited on-board computational resources. Most robot control approaches assume a fixed state and action representation, and use a single algorithm to map states to actions. However, not all situations in a given task require equally complex algorithms and equally detailed state and action representations. The main motivation for this work is a desire to reduce the computational footprint of performing a task by allowing the robot to run simpler algorithms whenever possible, and resort to a more complex algorithm only when needed. We contribute the Multi-Resolution Task Execution (MRTE) algorithm that utilizes human feedback to learn a mapping from a given state to an appropriate detail resolution consisting of a state and action representation, and an algorithm providing a mapping from states to actions at that resolution. The robot learns a policy from human demonstration to switch between different detail resolutions as needed while favoring lower detail resolutions to reduce computational cost of task execution. We then present the Model Plus Correction (M+C) algorithm to improve the performance of an algorithm using corrective human feedback without modifying the algorithm itself. Finally, we introduce the Multi-Resolution Model Plus Correction (MRM+C) algorithm as a combination of MRTE and M+C. MRM+C learns how to select an appropriate detail resolution to operate at in a given state from human demonstration. Furthermore, it allows the teacher to provide corrective demonstration at different detail resolutions to improve overall task execution performance. We provide formal definitions of MRTE, M+C, and MRM+C algorithms, and show how they relate to general robot control problem and Learning from Demonstration (LfD) approach. We present experimental results de-monstrating the effectiveness of proposed methods on a goal-directed humanoid obstacle avoidance task.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Argall B, Browning B, Veloso M (2008) Learning robot motion control with demonstration and advice-operators. In: Proceedings of IROS’08 Argall B, Browning B, Veloso M (2008) Learning robot motion control with demonstration and advice-operators. In: Proceedings of IROS’08
3.
Zurück zum Zitat Argall BD, Sauser E, Billard A (2010) Tactile guidance for policy adaptation. Found Trends Robot 1(2):79–133 CrossRef Argall BD, Sauser E, Billard A (2010) Tactile guidance for policy adaptation. Found Trends Robot 1(2):79–133 CrossRef
4.
Zurück zum Zitat Chernova S, Veloso M (2009) Interactive policy learning through confidence-based autonomy. J Artif Intell Res 34:1–25 Chernova S, Veloso M (2009) Interactive policy learning through confidence-based autonomy. J Artif Intell Res 34:1–25
5.
Zurück zum Zitat Cobo LC, Zang P, Isbell CL Jr, Thomaz AL (2011) Automatic state abstraction from demonstration. In: Proceedings of IJCAI 2011 Cobo LC, Zang P, Isbell CL Jr, Thomaz AL (2011) Automatic state abstraction from demonstration. In: Proceedings of IJCAI 2011
6.
Zurück zum Zitat Gerkey BP, Vaughan RT, Howard A (2003) The player/stage project: tools for multi-robot and distributed sensor systems. In: Proc of the intl conf on advanced robotics (ICAR 2003), pp 317–323 Gerkey BP, Vaughan RT, Howard A (2003) The player/stage project: tools for multi-robot and distributed sensor systems. In: Proc of the intl conf on advanced robotics (ICAR 2003), pp 317–323
7.
Zurück zum Zitat Grollman D, Jenkins O (2007) Dogged learning for robots. In: Proceedings of ICRA 2007 Grollman D, Jenkins O (2007) Dogged learning for robots. In: Proceedings of ICRA 2007
8.
Zurück zum Zitat Hoffmann J, Jüngel M, Lötzsch M (2004) A vision based system for goal-directed obstacle avoidance used in the RC’03 obstacle avoidance challenge. In: RoboCup 2004 symposium Hoffmann J, Jüngel M, Lötzsch M (2004) A vision based system for goal-directed obstacle avoidance used in the RC’03 obstacle avoidance challenge. In: RoboCup 2004 symposium
9.
Zurück zum Zitat Kolter JZ, Abbeel P, Ng AY (2007) Hierarchical apprenticeship learning with application to quadruped locomotion. In: Proceedings of NIPS’07 Kolter JZ, Abbeel P, Ng AY (2007) Hierarchical apprenticeship learning with application to quadruped locomotion. In: Proceedings of NIPS’07
10.
Zurück zum Zitat Lenser S, Veloso M (2003) Visual sonar: fast obstacle avoidance using monocular vision. In: Proceedings of IROS 2003 Lenser S, Veloso M (2003) Visual sonar: fast obstacle avoidance using monocular vision. In: Proceedings of IROS 2003
11.
Zurück zum Zitat Levine S, Popovic Z, Koltun V (2010) Feature construction for inverse reinforcement learning. In: Proc of NIPS 2010, pp. 1342–1350 Levine S, Popovic Z, Koltun V (2010) Feature construction for inverse reinforcement learning. In: Proc of NIPS 2010, pp. 1342–1350
12.
Zurück zum Zitat Mericli C, Mericli T, Akin HL (2010) A reward function generation method using genetic algorithms: a robot soccer case study. In: Proc of AAMAS 2010 Mericli C, Mericli T, Akin HL (2010) A reward function generation method using genetic algorithms: a robot soccer case study. In: Proc of AAMAS 2010
13.
Zurück zum Zitat Mericli C, Veloso M, Akin HL (2011) Task refinement for autonomous robots using complementary corrective human feedback. Int J Adv Rob Syst Mericli C, Veloso M, Akin HL (2011) Task refinement for autonomous robots using complementary corrective human feedback. Int J Adv Rob Syst
14.
Zurück zum Zitat Mericli C, Veloso M, Akin HL (2012) Improving biped walk stability with complementary corrective demonstration. Auton. Robots 32:419–432 CrossRef Mericli C, Veloso M, Akin HL (2012) Improving biped walk stability with complementary corrective demonstration. Auton. Robots 32:419–432 CrossRef
15.
Zurück zum Zitat Sullivan K, Luke S, Ziparo VA (2010) Hierarchical learning from demonstration on humanoid robots. In: Humanoids 2010 workshop on humanoid robots learning from human interaction Sullivan K, Luke S, Ziparo VA (2010) Hierarchical learning from demonstration on humanoid robots. In: Humanoids 2010 workshop on humanoid robots learning from human interaction
16.
Zurück zum Zitat Thomaz AL, Breazeal C (2006) Reinforcement learning with human teachers: evidence of feedback and guidance with implications for learning performance. In: Proceedings of AAAI 2006 Thomaz AL, Breazeal C (2006) Reinforcement learning with human teachers: evidence of feedback and guidance with implications for learning performance. In: Proceedings of AAAI 2006
Metadaten
Titel
Multi-resolution Corrective Demonstration for Efficient Task Execution and Refinement
verfasst von
Çetin Meriçli
Manuela Veloso
H. Levent Akın
Publikationsdatum
01.11.2012
Verlag
Springer Netherlands
Erschienen in
International Journal of Social Robotics / Ausgabe 4/2012
Print ISSN: 1875-4791
Elektronische ISSN: 1875-4805
DOI
https://doi.org/10.1007/s12369-012-0159-6

Weitere Artikel der Ausgabe 4/2012

International Journal of Social Robotics 4/2012 Zur Ausgabe

OriginalPaper

Fluid Imitation

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.