Skip to main content
Log in

Slope Instability Processes Affecting the Pietra Di Bismantova Geosite (Northern Apennines, Italy)

  • Original Article
  • Published:
Geoheritage Aims and scope Submit manuscript

Abstract

The Pietra di Bismantova, a vast biocalcarenite slab, is an impressive landmark and a unique feature in the gentle hilly landscape of the Reggio Emilia Apennines, Italy. It consists of a stratified calcareous rock type, rich in molluscs and other fossilised remains typical of a tropical climate. The site also has significant historical and cultural interests, including remains from Bronze Age and early Iron Age settlements. The perpendicular rock faces of the Pietra di Bismantova have for many years attracted rock climbers and hikers. Furthermore, the sheer calcareous walls are favoured sites for endemic plants and nesting of rare birds. Since the end of the last glaciation, the site has been subject to intense degradational processes affecting the rock slopes. Today, these pose serious problems for its conservation and the safety of visitors. The southern part is mainly affected by occasional rockfalls of varying magnitude. In contrast, the north-eastern part is much more jointed and dismembered and is subdivided into several loose blocks subject to slope movements with a complex style of activity. The results of a geomechanical and geomorphological survey are used to identify the area most prone to geomorphological hazards, particularly rockfalls. They show that the areas potentially most subject to landslides are the SE, NE and NW faces, where the rock parameters are poorest and degradational processes are particularly intense. Numerical modelling of rockfall phenomena indicates that the hazards are particularly high along the SE and W faces, where footpaths and climbing tracks are also located. Remedial measures should be introduced in these critical areas to stabilise the cliff and guarantee safe access for the numerous visitors to this geosite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. Dante described his ascent to the mount of Purgatory, comparing it to the steep trail going up Pietra di Bismantova: A man may climb to San Leo or down to Noli or to Bismantova’s height on foot, but here a man must fly – I mean upon the urgent wings of great desire, led by the one who gave me hope and light (Purgatory, canto IV).

References

  • Agliardi F, Crosta GB (2003) High resolution three-dimensional numerical modelling of rockfalls. Int J Rock Mech Min Sci 40:455–471

    Article  Google Scholar 

  • Bartolini C, Peccerillo A (2002) I fattori geologici delle forme del rilievo. Pitagora Bologna 5:37–38

    Google Scholar 

  • Barton N, Lien R, Lunde J (1974) Engineering classification of rock masses for the design of tunnel support. Rock Mech 6(4):189–239

    Article  Google Scholar 

  • Bertolini G, Pellegrini M (2001) The landslides of the Emilia Apennines (northern Italy) with reference to those which resumed activity in the 1994–1999 period and required civil protection interventions. Quad Geol Appl 8(1):27–74

    Google Scholar 

  • Bieniawski ZT (1989) Engineering rock mass classifications. Wiley Interscience, New York

    Google Scholar 

  • Bieniawski ZT (1993) Classification of rock masses for engineering: the RMR system and future trends. In: Hudson JA (ed) Comprehensive rock engineering, 3. Pergamon, London, pp 553–573

    Google Scholar 

  • Bromhead EN, Canuti P, Ibsen ML (2006) Landslides and cultural heritage. Landslides 3(4):273–274

    Article  Google Scholar 

  • Canuti P, Casagli N, Catani F, Fanti R (2000) Hydrogeological hazard and risk in archaeological sites: some case studies in Italy. J Cult Herit 1(2.1):117–125

    Article  Google Scholar 

  • Canuti P, Margottini C, Mucho R, Casagli N, Delmonaco G, Ferretti A, Lollino G, Puglisi C, Tarchi D (2005) Preliminary results on monitoring geomorphological evolution and slope stability of Inca citadel of Machu Picchu. In: Sassa K, Fukuoka H, Wang F, Wang G (eds) Landslides: risk analysis and sustainable disaster management. Springer-Verlag, Berlin, pp 39–47

    Google Scholar 

  • Chelli A, Mandrone G, Ruffini A, Truffelli G (2005) Dynamics and conceptual model of the Rossena castle landslide (Northern Apennines, Italy). Nat Hazards Earth Syst Sci 5:903–909

    Article  Google Scholar 

  • Conti S, Tosatti G (1994) Caratteristiche geologico-strutturali della Pietra di Bismantova e fenomeni franosi connessi (Appennino reggiano). Quad Geol Appl 1:25–43

    Google Scholar 

  • Coppola L, Nardone R, Rescio P, Bromhead E (2006) Reconstruction of the conditions that initiate landslide movement in weathered silty clay terrain: effects on the historic and architectural heritage of Pietrapertosa, Basilicata, Italy. Landslides 3(4):349–359

    Article  Google Scholar 

  • Cruden DM, Varnes DJ (1996) Landslide types and processes. In: Turner AK, Schuster RL (eds) Landslides investigation and mitigation. Spec Rep 247(3), transport research board. National Academy Press, Washington, pp 36–75

    Google Scholar 

  • D'Amato Avanzi G, Marchetti D, Puccinelli A (2006) Cultural heritage and geological hazards: the case of the Calomini hermitage in Tuscany (Italy). Landslides 3(4):331–340

    Article  Google Scholar 

  • Del Maschio L, Pizziolo M, Gozza G, Piacentini D (2004) Una metodologia integrata in ambiente GIS per l’analisi dei fenomeni di crollo: il caso studio di Monte delle Formiche (BO). Il Geologo dell'Emilia–Romagna 29:43–51

    Google Scholar 

  • Del Maschio L, Gozza G, Piacentini D, Pizziolo M, Soldati M (2007) Previsione delle traiettorie di blocchi mobilizzati da frane di crollo: applicazione e confronto di modelli. Giorn Geol Appl 6:33–44

    Google Scholar 

  • Dorren LKA, Berger F, Jonnson M, Krautblatter M, Moelk M, Stoffel M, Wehrli A (2007) State of the art in rockfall—forest interactions. Schweizerische Zeitschrift für Forstwesen 158(6):128–141

    Article  Google Scholar 

  • Duff K (1994) Natural areas: a holistic approach to conservation based on geology. In: O'Halloran D, Green C, Harley M, Stanley M, Knill J (eds) Geological and landscape conservation. Geological Society, London, pp 121–126

    Google Scholar 

  • Evans SG, Hungr O (1993) The assessment of rockfall hazard at the base of talus slopes. Can Geotech J 30:620–636

    Article  Google Scholar 

  • Fanti R (2006) Slope instability of San Miniato hill (Florence, Italy): possible deformation patterns. Landslides 3(4):323–330

    Article  Google Scholar 

  • Frattini P, Crosta GB, Carrara A, Agliardi A (2008) Assessment of rockfall susceptibility by integrating statistical and physically-based approaches. Geomorphology 94:419–437

    Article  Google Scholar 

  • Gelmini R (1990) L’Appennino reggiano-modenese. Guide Geologiche Regionali, Soc Geol It 4:60–64

    Google Scholar 

  • Giani GP (1992) Rock slopes stability analysis. Balkema, Rotterdam

    Google Scholar 

  • Giani GP (1997) Caduta massi. Analisi del moto ed opere di protezione. Collana “Argomenti di Ingegneria Geotecnica”, Hevelius Benevento

  • Guibas L, Stolfi J (1985) Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams. ACM T Graphic 4(2):74–123

    Article  Google Scholar 

  • Guzzetti F, Stark CP, Salvati P (2005) Evaluation of flood and landslide risk to the population of Italy. Environ Manage 36(1):15–36

    Article  Google Scholar 

  • Hungr O, Evans SG (1988) Engineering evaluation of fragmental rockfall hazards. Proc 5th Internat Symp on Landslides Lausanne 1:685–690

    Google Scholar 

  • Hungr O, Evans SG (1989) Engineering aspects of rockfall hazard in Canada. Geol Survey of Canada, Open File 2061, pp 102

  • Kobayashi Y, Harp EL, Kagawa T (1990) Simulation of rockfalls triggered by earthquakes. Rock Mech Rock Eng 23:1–20

    Article  Google Scholar 

  • Gruppo di Studio Università Emiliane per la Geomorfologia (1976) Geomorfologia dell’area circostante la Pietra di Bismantova (Appennino reggiano). Boll Serv Geol d’Italia 97

  • Lollino G, Audisio C (2006) UNESCO World Heritage sites in Italy affected by geological problems, specifically landslides and flood hazards. Landslides 3(4):311–321

    Article  Google Scholar 

  • Lombardi L, Casagli N, Gigli G, Nocentini M (2006) Verifica delle condizioni di sicurezza della S.P. Lodovica in seguito ai fenomeni di crollo nella cava di Sesto di Moriano (Lucca). Giorn Geol Appl 3:249–256

    Google Scholar 

  • Manhart C (2004) UNESCO’s role in the rehabilitation of Bamiyan in Afghanistan. Landslides 1(4):311–314

    Article  Google Scholar 

  • Margottini C (2004) Instability and geotechnical problems of the Buddha niches and surrounding cliff in Bamiyan Valley, central Afghanistan. Landslides 1(1):41–51

    Article  Google Scholar 

  • Matsuoka N, Sakai H (1999) Rockfall activity from an alpine cliff during thawing periods. Geomorphology 28:309–328

    Article  Google Scholar 

  • Paganelli E (2005) Studio geologico-tecnico della Pietra di Bismantova in relazione alla sua valorizzazione come geosito. BS thesis, Dep Earth Sciences, Modena and Reggio Emilia University (Italy)

  • Panizza M (2009) The geomorphodiversity of the Dolomites (Italy): a key of geoheritage assessment. Geoheritage 1:33–42

    Article  Google Scholar 

  • Panizza M, Piacente S (2003) Geomorfologia culturale. Pitagora Ed Bologna 6:218–224

    Google Scholar 

  • Panizza M, Piacente S (2009) Cultural geomorphology and geodiversity. In: Reynard E, Coratza P, Regolini-Bissig G (eds) Geomorphosites. Pfeil Verlag, Munich, pp 35–48

    Google Scholar 

  • Papani G, De Nardo MT, Bettelli G, Rio D, Tellini C, Vernia L (2002) Castelnovo ne’ Monti – Note Illustrative Carta Geol d’It 1:50.000. Servizio Geol d’Italia – Regione Emilia-Romagna

  • Pasuto A, Soldati M (1990) Rassegna bibliografica sulle Deformazioni Gravitative Profonde di Versante. Quaternario 3(2):131–140

    Google Scholar 

  • Pfeiffer T, Bowen T (1989) Computer simulation of rock falls. Bull Assoc Eng Geol 26(1):135–146

    Google Scholar 

  • Piacente S, Coratza P (eds) (2005) Geomorphological sites and geodiversity. Il Quaternario, Spec 8(1)

  • Piacente S, Poli G (eds) (2003) La memoria della Terra, la terra della memoria, Università degli Studi di Modena e Reggio Emilia—Regione Emilia-Romagna, L’inchiostroblu, p 159

  • Poli G (ed) (1999) Geositi. Testimoni del tempo. Serv Paesaggio, Parchi e Patrimonio Naturale. Regione Emilia-Romagna, Bologna

    Google Scholar 

  • Reynard E (2004) Géotopes, géo(morpho)sites et paysages géomorphologiques. In: Reynard E, Pralong JP (eds) Paysages géomorphologiques. Édition Institut de Géographie de l’Université, Travaux et Recherches Lausanne 27., pp 123–136

  • Rochet L (1987) Application des modèles numériques de propagation a l’étude des éboulements rocheux. Bulletin des Laboratoire des Ponts et Chaussées 150(151):84–95

    Google Scholar 

  • Rocscience (2002) RocFall user manual. Statistical analysis of rockfalls, Rocscience Inc

  • Rocscience (2003) Determining input parameters for rock fall analysis. RocNews, Advanced tutorial, Rocscience Inc

  • Rocscience (2004) RocFall, statistical analysis of rockfalls, Ver. 4. RocScience Inc

  • Sassa K (1998) IGCP-425 Landslide hazard assessment and mitigation for cultural heritage sites and other locations of high societal value. Int Newsl Landslide News 11:34–36

    Google Scholar 

  • Sassa K (2004a) The international consortium on landslides. Landslides 1(1):91–94

    Article  Google Scholar 

  • Sassa K (2004b) The international programme on landslides. Landslides 1(1):95–99

    Google Scholar 

  • Sassa K, Fukuoka H, Wang G, Wang F, Benavente E, Ugarte D, Astete FV (2005) Landslide investigation in Machu Picchu world heritage, Cusco, Peru. In: Sassa K, Fukuoka H, Wang F, Wang G (eds) Landslides, risk analysis and sustainable disaster management. Springer-Verlag, Berlin, pp 25–38

    Google Scholar 

  • Sdao F, Simeone V (2007) Mass movements affecting Goddess Mefitis shrine in Rossano di Vaglio (Basilicata, southern Italy). J Cult Herit 8(1):77–80

    Article  Google Scholar 

  • Stanley M (2002) Geodiversity. Linking people, landscape and their culture. In: Parkes M (ed) Natural and cultural landscapes – the geological foundation. Royal Irish Academy, Dublin, pp 45–52

    Google Scholar 

  • Tagliavini F, Reichenbach P, Maragna D, Guzzetti F, Pasuto A (2009) Comparison of 2-D and 3-D computer models for the Mt. Salta rock fall, Vajont Valley, northern Italy. Geoinformatica 13:323–337

    Article  Google Scholar 

  • Terrasolid (2005) TerraScan – software for processing airborne and mobile laser data and images. http://www.terrasolid.fi/en/products/4

  • Tosatti G (2004) Morphologic and structural characteristics of the Pietra di Bismantova. In: Geodiversity in the landscape of Emilia-Romagna (northern Italy): Geosites in the Apennines between Modena and Reggio Emilia. 32nd Internat Geol Congress, Pre-congress Field-trip Florence, pp 20–22

  • Tosatti G (2008) Slope instability affecting the Canossa geosite (Northern Apennines, Italy). Geogr Fis Din Quat 31(2):239–246

    Google Scholar 

  • Wimbledon WA (1990) European heritage sites and type-site inventories. Jb Geol B-A 133:657–658

    Google Scholar 

  • WP/WLI Working Party on the World Landslide Inventory, Canadian Geotechnical Society (1993) Multilingual landslide glossary. BiTech Publishers, Richmond

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Tosatti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borgatti, L., Tosatti, G. Slope Instability Processes Affecting the Pietra Di Bismantova Geosite (Northern Apennines, Italy). Geoheritage 2, 155–168 (2010). https://doi.org/10.1007/s12371-010-0023-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12371-010-0023-8

Keywords

Navigation