Skip to main content
Log in

Crack growth time dependence analysis of granite under compressive-shear stresses state

  • Published:
Journal of Coal Science and Engineering (China)

Abstract

The curves of crack relative length l/b and crack growth time t of granite were gained under compressive stresses state according to subcritical crack growth parameters and crack stability growth equation by double-torsion constant displacement load relaxation method. The relations between crack relative length and the crack growth time were discussed under different stresses and different crack lengths. The results show that there is a turning point on curve of crack relative length l/b and crack growth time of granite. The slope of curve is small when crack relative length is less than the vertical coordinate of the point, and crack grows stably in this case. Cracks grow, encounter and integrate catastrophically when crack relative length is more than the vertical coordinate of the point, and there is not a gradual stage from crack stability growth to crack instability growth, i.e. rock mass instability is sudden. The curves of crack relative length l/b and crack growth time t of granite move to right with decrease of stress gs 1 or crack length a, which implies that limit time increases consequently. The results correspond to practicality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. 邓 广哲, 朱 维申. 蠕变裂隙扩展与岩石长时强度效应实验研究[J]. 实验力学, 2002, 17(2): 177–183. Deng Guangzhe, Zhu Weishen. An experiment research on the crack propagation in rockmass[J]. Journal of Experimental Mechanics, 2002, 17(2): 177–183.

    Google Scholar 

  2. Li Yongsheng, Xia Caichu. Time-dependent tests on intact rocks in uniaxial compression[J]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37: 467–475.

    Article  Google Scholar 

  3. 肖 洪天, 强 天弛, 周 维垣. 三峡船闸高边坡损伤流变研究及实测分析[J]. 岩石力学与工程学报, 1999, 18(5): 497–502. Xiao Hongtian, Qang Tianchi, Zhou Weiyuan. Rheologic damage study of three gorges shiplock highslope and analysis on in situ measured deformation[J]. Chinese Journal of Rock Mechanics and Engineering, 1999, 18(5): 497–502.

    Google Scholar 

  4. 张 晓春. 中厚软岩板静载弯曲时中面特性的时间相关分析[J]. 岩石力学与工程学报, 2004, 23(9): 1 424–1 427. Zhang Xiaochun. Time-dependency of neutral surface feature of mid-thick soft rock plate under static load bending[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(9): 1 424–1 427.

    Google Scholar 

  5. 张 晓春, 张 东升, 缪 协兴. 井巷围岩的延迟机理分析[J]. 岩石力学与工程学报, 2001, 20(6): 830–833. Zhang Xiaochun, Zhang Dongsheng, Miao Xiexing. Study of delay instability on surrounding rock masses of roadway[J]. Chinese Journal of Rock Mechanics and Engineering, 2001, 20(6): 830–833.

    Google Scholar 

  6. Martina C D, Maybeeb W G. The strength of hard-rock pillars[J]. International Journal of Rock Mechanics & Mining Sciences, 2000, 37: 1 239–1 246.

    Google Scholar 

  7. 罗 礼. 用双扭方法测试岩石的亚临界裂纹扩展速度和断裂韧度[D]. 长沙: 中南工业大学, 1988. Luo Li. Determination of subcritical crack growth velocity and the fracture toughness by double torsion method[D]. Changsha: Central South University of Technology, 1988.

    Google Scholar 

  8. Melin S. When does a crack grow under mode II conditions [J]. Int. J. of Fract., 1986, 30: 103–104.

    Google Scholar 

  9. Cotterell B, Rice J R. Slightly curved or kinked cracks [J]. Int. J. of Fract., 1980, 16(2): 155–169.

    Article  Google Scholar 

  10. Ebrahimi M E, Chevalier J, Fantozzi G. Slow crack growth behavior of alumina ceramics[J]. J. Master. Res., 2000, 15(1): 142–147.

    Article  Google Scholar 

  11. 陈 枫. 岩石压剪断裂的理论与实验研究[D]. 长沙: 中南大学, 2002. Chen Feng. Study on theory and experiment of compressive-shear fracture[D]. Changsha: Central South University, 2002.

    Google Scholar 

  12. Lajtai E Z. A theoretical and experimental evaluation of Griffith theory of brittle fracture[J]. Techonophysics, 1971, 11: 129–156.

    Article  Google Scholar 

  13. Azant Z P B. Crack band theory for fracture of concrete[J]. Mater. Structure, 1983, 16: 155–177.

    Google Scholar 

  14. Baud P, Reuschle T, Charlze P. An improved wing crack model for the deformation and failure of rock in compression[ J]. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 1996, 33(5): 539–542.

    Article  Google Scholar 

  15. Kemey J M. A model for non-linear rock deformation under compression due to sub-critical crack growth[J]. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 1991, 28(6): 459–467.

    Article  Google Scholar 

  16. 缪 协兴, 安 里千, 翟 明华. 岩(煤)壁中滑移裂纹扩展的冲击矿压模型[J]. 中国矿业大学学报, 1999, 28(2): 113–117. Miao Xiexing, An Liqian, Zhai Minghua. Model of rock burst for extension of slip fracture in palisades[J]. Journal of China University of Mining & Technology. 1999, 28(2): 113–117.

    Google Scholar 

  17. 李 江腾. 硬岩矿柱失稳及时间相依性研究[D]. 长沙: 中南大学, 2005. Li Jiangteng. Study on instability and time dependence of pillar in hard rock mass[D]. Changsha: Central South University, 2005.

    Google Scholar 

  18. Cao Ping, Li Jiangteng, Yuan Haiping. Testing study of subcritical crack growth and fracture toughness in different rocks[J]. Transactions of Nonferrous Metals Society of China, 2006, 16(3): 709–713.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiang-teng Li  (李江腾).

Additional information

Supported by China Postdoctoral Science Foundation(20060400264); CSU Postdoctoral Science Foundation; the National Nature Science Foundation of China(50490274)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Jt., Cao, P., Gu, Ds. et al. Crack growth time dependence analysis of granite under compressive-shear stresses state. J Coal Sci Eng China 14, 34–37 (2008). https://doi.org/10.1007/s12404-008-0007-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12404-008-0007-3

Keywords

Navigation