Skip to main content
Log in

Prediction and controlling of flyrock in blasting operation using artificial neural network

مجردة

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Flyrock is one of the most hazardous events in blasting operation of surface mines. There are several empirical methods to predict flyrock. Low performance of such models is due to complexity of flyrock analysis. Existence of various effective parameters and their unknown relationships are the main reasons for inaccuracy of the empirical models. Presently, application of new approaches such as artificial intelligence is highly recommended. In this paper, an attempt has been made to predict and control flyrock in blasting operation of Sangan iron mine, Iran incorporating rock properties and blast design parameters using artificial neural network (ANN) method. A three-layer feedforward back-propagation neural network having 13 hidden neurons with nine input parameters and one output parameter were trained using 192 experimental blast datasets. It was also observed that in ascending order, blastability index, charge per delay, hole diameter, stemming length, powder factor are the most effective parameters on the flyrock. Reducing charge per delay caused significant reduction in the flyrock from 165 to 25 m in the Sangan iron mine.

Abstract

يطير الصخرة هي واحدة من أكثر الأحداث الخطرة في عملية تفجير الألغام السطحية. هناك العديد من الطرق التجريبية للتنبؤ يطير الصخور. انخفاض أداء مثل هذه النماذج ومن المقرر أن تعقد يطير تحليل الصخور. وجود المعلمات الفعالة المختلفة وعلاقاتهم غير معروفة هي الأسباب الرئيسية لعدم دقة النماذج التجريبية. في الوقت الحاضر ، وتطبيق مناهج جديدة مثل الذكاء الاصطناعي (منظمة العفو الدولية) ينصح بشدة. في هذه الورقة ، وبذلت محاولة للتنبؤ ومراقبة الطيران في تفجير الصخور تشغيل منجم سنکان الحديد ، وإيران تتضمن خواص الصخور والمعلمات تصميم الانفجار باستخدام الشبكة العصبية الاصطناعية (ANN) الأسلوب. وهناك ثلاثة تغذية طبقة قدما اعادة نشر الشبكة العصبية بعد 13 الخلايا العصبية الخفية مع 9 معلمات الإدخال والإخراج 1 معلمة تم تدريب 192 باستخدام قواعد البيانات التجريبية الانفجار. لوحظ أيضا أن في ترتيب تصاعدي ، قدرة مؤشر الانفجار ، المسؤول في التأخير ، حفرة قطرها ، ووقف طول عامل مسحوق ، هي المعايير الأكثر فعالية على صخرة تطير. تخفيض رسوم التأخير تسبب في انخفاض كبير في الصخر الطيران من 165 م الى 25 م فى منجم سنکان الحديد.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Atlas Powder Company (1987) Explosives and rock blasting. Atlas Powder Company Field Technical Operations, Dallas

    Google Scholar 

  • Bhowmik S, Raina AK, Chakraborty AK, Ramulu M, Sahu PB, Haldar A, Choudury PB, Srinivas P, Bandopadhyay C (2004) Flyrock prediction and control in opencast mines: a critical appraisal. Mining Engineers Journal 5:6–10

    Google Scholar 

  • Chandok JS, Kar IN, Tuli S (2008) Estimation of furnace exit gas temperature (FEGT) using optimized radial basis and back-propagation neural networks. Energy Convers Manage 49:1989–1998

    Article  Google Scholar 

  • Cigizoglu HK, Kis OZR (2005) Flow prediction by three back propagation techniques using k-fold partitioning of neural network training data. Nord Hydrol 36:49–64

    Google Scholar 

  • Fletcher LR, D'Andrea DV (1986) Control of flyrock in blasting. Proc., 12th Conf on Explosives and Blasting Technique, Atlanta, Georgia, pp 167–177

  • Grznar J, Prasad S, Jasmine J (2007) Neural networks and organizational systems: modeling non-linear relationships. Eur J Oper Res 181:939–955

    Article  Google Scholar 

  • Haykin S (1999) Neural networks: a comprehensive fundation. (2nd ed.) Upper Saddle Rever, New Jersey: Prentice Hall

  • Hornik K (1991) Approximation capabilities of multi layer feed forward networks. Neural Netw J 4:251–257

    Article  Google Scholar 

  • Hustrulid W (1999) Blasting Principles for Open Pit Mining. General Design Concepts, A A Balkema, Rotterdam, Netherlands

    Google Scholar 

  • Kalogirou S (2000) Applications of artificial neural networks for energy systems. Appl Energy 67:17–35

    Article  Google Scholar 

  • Khandelwal M, Singh TN (2002) Prediction of waste dump stability by an intelligent approach. Nat Sym, New Equipment—New Technology, Management and Safety, ENTMS, Bhubaneshwar, pp 38–45

  • Khandelwal M, Singh TN (2006) Prediction of blast induced ground vibration and frequency in opencast mines. J of Sound Vibr 289:711–725

    Article  Google Scholar 

  • Kim CY, Bae GJ, Hong SW, Park CH, Moon HK, Shin HS (2001) Neural network based prediction of ground surface settlements due to tunneling. Comput Geotech 28:517–547

    Article  Google Scholar 

  • Langefors U, Kishlstrom B (1963) The modern technique of rock blasting. Wiley, New York

    Google Scholar 

  • Lundborg N (1974) The hazards of fly rock in rock blasting, Report DS1974. Swedish Detonic Research Foundation, p 12

  • Lundborg N, Persson A, Ladegaard-Pedersen A, Holmberg R (1975) Keeping the lid on flyrock in open-pit blasting. Engineering Mining Journal 176:95–100

    Google Scholar 

  • Massey JB, Siu KL (2003) Investigation of flyrock incident at Clear Water Bay Road on 6 June. Civil Engineering Department, the Government of the Hong Kong Special Administrative Region, Hong Kong, p 49

  • Maulenkamp F, Grima MA (1999) Application of neural networks for the prediction of the unconfined compressive strength (UCS) from Equotip Hardness. Int J Rock Mech Min Sci Geomech Abstr 36:29–39

    Article  Google Scholar 

  • McCulloch WS, Pitts W (1988) A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys 5:115–133

    Article  Google Scholar 

  • Monjezi M, Dehghani H (2008) Evaluation of effect of blasting pattern parameters on back break using neural networks. Int J Rock Mech Min Sci Geomech Abstr 45:1446–1453

    Article  Google Scholar 

  • Monjezi M, Yazdian A, Hesami SM (2006) Use of back propagation neural network to estimate burden in tunnel blasting. Mines Met Fuels 54:424–429

    Google Scholar 

  • Monjezi M, Dehghan H, Samimi Namin F (2007) Application of TOPSIS method in controlling fly rock in blasting operations. In: Proceedings of the seventh international science conference SGEM. Sofia, Bulgaria, pp 41–49

  • Neaupanea KM, Achet SH (2004) Use of backpropagation neural network for landslide monitoring: a case study in the higher Himalaya. Eng Geol 74:213–226

    Article  Google Scholar 

  • Parker DB (1985) Learning logic. Technical Report TR-47. Center for Computational Research in Economics and Management Science, Massachusetts Institute of Technology, Cambridge, MA

  • Reed RD, Marks RJ (1998) Neural Smithing: Supervised Learning in Feed Forward Artificial Neural Networks. MIT Press, Cambridge

    Google Scholar 

  • Rosenblatt F (1988) The perceptron: a probabilistic model for information storage and organization in the brain. Psychol Rev 65:386–408

    Article  Google Scholar 

  • Roth JA (1979) A model for the determination of flyrock range as a function of shot condition. US Department of Commerce, NTIS Report No PB81222358, p 61

  • Salah A (2004) Coal Mine, Panel BYH. MSc thesis, Grad School Appl Natur Sci, Middle East Tech Univ, Ankara, Turkey, pp 31–40

  • Seiberl W, Ahl A, Winkler E (1998) Interpretation of airborne electromagnetic data with neural networks. Explor Geophys 29:152–156

    Article  Google Scholar 

  • Simpson PK (1990) Artificial neural system: foundation, paradigms, applications and implementations. Pergamon, New York

    Google Scholar 

  • Singh TN, Singh V (2005) An intelligent approach to prediction and control ground vibration in mines. Geotech Geol Eng 23:249–262

    Article  Google Scholar 

  • Tawadrous AS (2006) Evaluation of artificial neural networks. Int Soc Explos Eng 1:1–12

    Google Scholar 

  • Verakis HC, Lobb TE (2003) An analysis of blasting accidents in mining operations. In: Proc of the 29th Annual Conference on Explosives and Blasting Technique, Vol. 2, 2–5 February, Cleveland, OH: International Society of Explosives Engineers, pp 119–129

  • Yang Y, Zhang Q (1997) A hierarchical analysis for rock engineering using artificial neural networks. Rock Mech Rock Eng 30:207–222

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Monjezi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monjezi, M., Bahrami, A., Varjani, A.Y. et al. Prediction and controlling of flyrock in blasting operation using artificial neural network. Arab J Geosci 4, 421–425 (2011). https://doi.org/10.1007/s12517-009-0091-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12517-009-0091-8

Keywords

Navigation