Skip to main content
Log in

Crustal thermal regime of Ikogosi warm spring, Nigeria inferred from aeromagnetic data

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Spectral analysis method was applied to aeromagnetic data obtained for Ikogosi warm spring (IWS) area of southwestern Nigeria. This was done with the objective of determining the bottom of the magnetized crust called Curie point depth (CDP) and understand the nature and extent of the local geothermal system at depth beneath IWS. The depth to the centroid, Z o, of the deepest distribution of the magnetic dipoles was obtained by computing least-squares fit to the lowest-frequency segment of the azimuthally averaged log power spectrum. The average depth to the top of the deepest crustal block was computed as the depth to the top, Z t, of the second lowest-frequency segment of the spectrum. The depth to the bottom of the deepest magnetic dipoles, the inferred Curie point depth, was then calculated from Z b = 2Z o − Z t. The Curie depth estimates for IWS range between 4.68 and 11.38 km (below sea level). We also estimate the heat flow and Curie temperature using a one-dimensional conductive heat transport model. The average heat flow, 42 mW m−2, and geothermal gradient, 32°C/km, obtained suggest a low enthalpy thermal regime. The Curie temperature for the region varies between 153°C and 350°C. Also, an inverse linear relationship between heat flow and Curie depths was determined. Good agreement between the Curie point depths derived from heat flow data and magnetic data suggests that the Curie point depth analysis is useful to estimate the regional thermal structure and the tectonic settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adegbuyi O, Ajayi OS, Odeyemi IB (1996) Prospects of hot-dry-rock (HDR) geothermal energy around the Ikogosi warm spring in Ekiti state. Nigeria J Renewal Energy 4:58–64

    Google Scholar 

  • Adepelumi AA, Ako BD, Ajayi TR, Olorunfemi AO, Awoyemi MO, Falebita DE (2008) Integrated geophysical mapping of the Ifewara transcurrent fault system, Nigeria. J Afr Earth Sci 52:161–166

    Article  Google Scholar 

  • Akima H (1978) A method of bivariate interpolation and smooth surface fitting for irregularly distributed data points. ACM Trans Math, Soft 4(2):148–159

    Article  Google Scholar 

  • Bhattacharyya BK, Leu LK (1975a) Spectral analysis of gravity and magnetic anomalies due to two-dimensional structures. Geophysics 40:993–1013

    Article  Google Scholar 

  • Bhattacharyya BK, Leu LK (1975b) Analysis of magnetic anomalies over Yellowstone National Park: mapping of Curie point isothermal surface for geothermal reconnaissance. J Geophys Res 80:4461–4465

    Article  Google Scholar 

  • Black R, Caby R, Monssine Pouchkin A, Bayer R, Betrand JM, Boullier AM, Fabre J, Lesquer A (1979) Evidence for late Precambrian plate tectonics in West Africa. Nature 278:223–227

    Article  Google Scholar 

  • Byerly PE, Stolt RH (1977) An attempt to define the Curie point isotherm in northern and central Arizona’. Geophysics 42:1394–1400

    Article  Google Scholar 

  • Caby R, Boesse JM (2001) Pan-African Nappe system in south west Nigeria; the Ife-Ilesha Schist Belt. J Afr Earth Sci 33(2):211–225

    Article  Google Scholar 

  • Connard G, Couch R, Gemperle M (1983) Analysis of aeromagnetic measurements from the Cascade Range in central Oregon. Geophysics 48:376–390

    Article  Google Scholar 

  • Dada SS (1998) Crustal forming ages and Proterozoic crustal evolution in Nigeria: a reappraisal of current interpretations. Precambrian Res 87:65–74

    Article  Google Scholar 

  • Espinosa-Cardeña JM, Campos-Enriquez JO (2008) Curie point depth from spectral analysis of aeromagnetic data from Cerro Prieto geothermal area, Baja California, Mexico. J Volcanol Geotherm Res 176:601–609

    Article  Google Scholar 

  • Gasparini P, Mantovani MSM, Corrado G, Rapolla A (1979) Depth of Curie temperature in continental shields: a compositional boundary? Nature 278:845–846

    Article  Google Scholar 

  • Lachenbruch AH, Sass JH (1978) Models of an extending lithosphere and heat flow in the Basin and range province. In: Smith RB, Eaton GP (eds) Cenozoic tectonics and regional geophysics of western Cordillera. Geological Society of America memoir, vol 152. Geological Society of America, Boulder, pp 209–250

    Google Scholar 

  • Lachenbruch AH, Sass JH, Galanis SP Jr (1985) Heat flow in southernmost California and the origin of the Salton trough. J Geophys Res 90:6709–6736

    Article  Google Scholar 

  • Medina OK (2000) Limnological studies of two contrasting but closely linked springs in Nigeria, West Africa. Plant Biosyst An Int J Dealing Aspects Plant Biol 134(2):123–131

    Google Scholar 

  • Mushayandebvu MF, Davies J (2006) Magnetic gradients in sedimentary basins: examples from the Western Canada Sedimentary Basin. Lead Edge 25(1):69–73

    Article  Google Scholar 

  • Nathenson M, Guffanti M (1988) Geothermal gradients in the conterminous United States. J Geophys Res 93:6437–6450

    Article  Google Scholar 

  • Okubo Y, Graf RJ, Hansen RO, Ogowa K, Tsu H (1985) Curie point depth of the island of Kyushu and surrounding areas, Japan. Geophysics 50:481–494

    Article  Google Scholar 

  • Okubo Y, Tsu H, Ogawa K (1989) Estimation of Curie point temperature and geothermal structure of island arcs of Japan. Tectonophysics 159:279–290

    Article  Google Scholar 

  • Onwuemesi AG (1997) One-dimensional spectral analysis of aeromagnetic anomalies and Curie depth isotherm in the Anambra basin of Nigeria. J Geodyn 23(2):95–107

    Article  Google Scholar 

  • Phillips JD (1997) Potential-field geophysical software for the PC, version 2.2. United State Geological Survey, Open-File Report, 97-725

  • Porowski A and Dowgiallo J (2008) Application of selected geothermometers to exploration of low-enthalpy thermal water: the Sudetic Geothermal Region in Poland. Environ Geol. doi:10.1007/s00254-008-1409-7

  • Rahaman MAO (1988) Recent advances in the study of the basement complex of Nigeria. In: Oluyide PO, Mbonu WC, Ogezie AE, Egbuniwe IG, Ajibade AC, Umeji AC (eds) Precambrian Geol Nigeria. Geological Survey of Nigeria, Kaduna, pp 11–41

    Google Scholar 

  • Reford S (2006) Gradient enhancement of the total magnetic field. Lead Edge 25(1):59–66

    Article  Google Scholar 

  • Riddihoug RP (1971) Diurnal correction to magnetic survey—an assessment of errors. Geophys Prospect 19(4):551–567

    Article  Google Scholar 

  • Rogers AS, Imevbore AMA, Adegoke OS (1969) Physical and chemical properties of the Ikogosi warm spring, Western Nigeria. J Min Geol 4:69–81

    Google Scholar 

  • Salem A, Ushijima K, Elsirafi A, and Muzunaga H (2000) Spectral analysis of aeromagnetic data for geothermal reconnaissance of Quseir area, northern Red Sea, Egypt. Proc World Geoth Congress, pp 1669–1673

  • Spector A, Grant FS (1970) Statistical models for interpreting aeromagnetic data. Geophysics 35:293–302

    Article  Google Scholar 

  • Stacey FD, Banerjee SK (1974) The physical principles of rock magnetism. Elsevier, Amsterdam, 195 pp

    Google Scholar 

  • Stampolidis A, Tsokas G (2002) Curie point depth of Macedonia and Thrace, N. Greece. Pure Appl Geophys 159:1–13

    Article  Google Scholar 

  • Stampolidis A, Kane I, Tsokas GN, Tsourlos P (2005) Curie point depths of Albania inferred from ground total field magnetic data. Surv Geophys 26:461–480

    Article  Google Scholar 

  • Tanaka A, Okubo Y, Matsubayashi O (1999) Curie point depth based on spectrum analysis of the magnetic anomaly data in East and Southeast Asia. Tectonophysics 306:461–470

    Article  Google Scholar 

  • Tselenti GA (1991) An attempt to define Curie point depths in Greece from aeromagnetic and heat flow data. PAGEOPH 136(1):87–101

    Article  Google Scholar 

  • Tsokas GN, Hansen RO, Fytikas M (1998) Curie point depth of the island of Crete (Greece). Pure Appl Geophys 152:747–757

    Article  Google Scholar 

  • Turcotte DL, Schubert G (1982) Geodynamics applications of continuum physics to geologic problems. Wiley, New York, 450 pp

    Google Scholar 

  • Turner DC (1983) Upper Proterozoic schist belts in the Nigerian sector of the Pan-African province of West-Africa. Precambrian Res 21:55–79

    Article  Google Scholar 

  • Winglink™ (2007) Integrated interpretation software. Geosystem Incorporated, USA

    Google Scholar 

Download references

Acknowledgments

The second author wishes to thank TWAS/UNESCO for sponsoring part of this project through the research Grant No. 07-018LDC/GEO/AF/AC-UNESCO FR: 3240144812. Also, the management of Getech Nigeria is appreciated for funding the fieldwork and making the ground magnetic data available to us. Also, the Nigeria Geological Survey Agency is profoundly appreciated for the release of the aeromagnetic data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A Adepelumi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olorunfemi, M.O., Adepelumi, A.A., Falebita, D.E. et al. Crustal thermal regime of Ikogosi warm spring, Nigeria inferred from aeromagnetic data. Arab J Geosci 6, 1657–1667 (2013). https://doi.org/10.1007/s12517-011-0486-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12517-011-0486-1

Keywords

Navigation