Skip to main content
Log in

Identification of the behavior of sandy soil to static liquefaction and microtomography

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

In this paper, undrained triaxial compression tests were performed on specimens obtained in Oued Rass sand (Chlef, Algeria). The objective of this study is to investigate the effects of specimen deposition methods, the initial density, and the confining pressure on the undrained behavior of this sand. The test results show that the initial confining pressure and the relative density affected, in a significant manner, the resistance to liquefaction. However, it increases with confining pressure and relative density. The results also show that the specimens prepared by dry deposition method have a greater resistance to liquefaction than those prepared by moist tamping. A nondestructive comparative analysis of the deposits by X-ray microtomography carried out at the granular scale made it possible to characterize more precisely the difference of the obtained structures for the two deposition modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

Abbreviations

RD (%):

Relative density

D 10 (mm):

Effective diameter

D 50 (mm):

Mean grain size

e :

Void ratio

e c :

Void ratio after consolidation

e max :

Maximum void ratio

e min :

Minimum void ratio

C u :

Coefficient of uniformity (C u  = D 60/D 10)

C c :

Coefficient of curvature (C c  = (D 30)2/(D 60 × D 10))

ρ s (g/cm3):

Specific density of the solid grains

ρ dmax (g/cm3):

Maximum density of the solid grains

ρ dmin (g/cm3):

Minimum density of the solid grains

q(kPa):

Deviator stress (q = σ1 − σ3)

p′(kPa):

Effective mean stress (p′ = (σ' 1 + 2σ3)/3)

σ1 (kPa):

Major principal effective stress

σ3 (kPa):

Minor effective stress

Δu (kPa):

Excess pore pressure

References

  • Barruchel J, Buffière JY, Maire E, Merle P, Peix G (2000) X-ray tomography in material science. Hermès, Paris

    Google Scholar 

  • N. Benahmed, J. Canou, J.C. Dupla 1999. Influence des conditions initiales et du type de chargement sur la stabilité du comportement non drainé d’un sable lâche. C.R 12th Europ. Conf. of Soil. Mechanics and Foundations Engineering, Amsterdam (2): 687–690.

  • Benahmed N, Canou J, Dupla JC (2004) Structure initiale et propriétés de liquéfaction statique d’un sable. Comptes rendus mécanique 332:887–894

    Google Scholar 

  • Bousquet H (1988) Etude du comportement d’un sable lâche et application à la liquéfaction statique. Rapport de D.E.A, Institut de Mécanique de Grenoble, France

    Google Scholar 

  • Canou J (1989) Contribution à l’étude et à l’évaluation des propriétés de liquéfaction d’un sable. Thèse de doctorat de l’Ecole Nationale des Ponts et Chaussées, Paris, France

    Google Scholar 

  • J. Canou, M. El Hachem, A. Kattan 1990. Propriétés de liquéfaction statique du sable lâche. 25ème Colloque du groupe français de rhéologie, Grenoble, France.

  • Canou J, El Hachem M (1992) Influence du mode de preparation sur le comportement mécanique non drainé d’un sable lâche. Colloque René Houpert, Nancy, France

    Google Scholar 

  • G. Castro 1969. Liquefaction of sands. PhD thesis, Harvard University, Cambridge, USA.

  • Della N, Arab A, Belkhatir M, Missoum H (2009) Identification of the behavior of the Chlef sand to static liquefaction. Comptes Rendus Mécanique 337(5):282–290

    Article  Google Scholar 

  • Della N, Arab A, Belkhatir M, Missoum H, Bacconnet C, Boissier D (2010) Effect of the initial structure on the behaviour of Chlef sand. Acta Geotechnica Slovenica 7(2):5–15

    Google Scholar 

  • Desrues J, Chambon R, Mokni M, Mazerolle F (1996) Void ratio evolution inside shear bands in triaxial sand specimens studied by computed tomography. Geotechnique 46:529–546

    Article  Google Scholar 

  • Djedid A (1986) Etude du comportement non drainé d’un sable. Rapport de D.E.A, Institut de Mécanique de Grenoble, France

    Google Scholar 

  • Ishihara K (1993) Liquefaction and flow failure during earthquakes. Geotechnique 43(3):351–415

    Article  Google Scholar 

  • Konrad JM (1993) Undrained response of loosely compacted sands during monotonic and cyclic compression tests. Geotechnique 43(1):69–89

    Article  Google Scholar 

  • Kramer SL, Seed HB (1988) Initiation of soil liquefaction under static loading conditions. J Geotech Eng 114(4):412–430

    Article  Google Scholar 

  • Lenoir N (2006) Comportement mécanique et rupture dans les roches argileuses étudiées par tomographie à rayons X. Thèse de doctorat de Université Joseph Fourrier de Grenoble, France

    Google Scholar 

  • Meghachou M (1993) Stabilité des sables lâches: essais et modélisations. Thèse de doctorat de l’université Joseph Fourrier de Grenoble I, France

    Google Scholar 

  • Mulilis JP, Seed HB, Chan CK, Mitchell JK, Arulanadan K (1977) Effects of sample preparation on sand liquefaction. J Geotech Eng Div ASCE 103:91–108

    Google Scholar 

  • Quellet S, Bussière B, Aubertin M, Benzaazoua M (2008) Characterization of cemented paste backfill pore structure using SEM and IA analysis. Bull Eng Geol Environ 67:139–152

    Article  Google Scholar 

  • Seed HB (1983) The slide of the port of Nice. Special lecture. Offshore Technical Conference, Houston

    Google Scholar 

  • Sladen JA, Hollonder RD, Krahn J (1985) The liquefaction of sands, a collapse surface approach. Can Geotech J 22(4):564–579

    Article  Google Scholar 

  • Thomson PR, Wong RCK (2008) Specimen nonuniformities in water-pluviation and moist-tamped sands under undrained triaxial compression and extension. Can Geotech J 45:939–956

    Article  Google Scholar 

  • Vaid YP, Sivathayalan S, Stedman D (1999) Influence of specimen reconstituting method on the undrained response of sand. Geotech Test J 22(3):187–195

    Article  Google Scholar 

  • Wanatowski D, Chu J (2008) Effect of specimen preparation method on the stress–strain behaviour of sand in plane–strain compression tests. Geotech Test J 31(4):308–320

    Google Scholar 

  • Wood FM, Yamamuro JA, Lade PV (2008) Effect of depositional method on the undrained response of silty sand. Can Geotech J 45(11):1525–1537

    Article  Google Scholar 

  • Yamamuro JA, Wood FM (2004) Effect of depositionnal method on the undrained behaviour and microstructure of sand with silt. Soils Dyn Earthquake Eng 24(9):751–760

    Article  Google Scholar 

  • Zlatovic S, Ishihara K (1997) Normalized behaviour of very loose non-plastic soils: effects of fabric. Soils and Foundations 37(4):47–56

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Arab.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krim, A., el Abidine Zitouni, Z., Arab, A. et al. Identification of the behavior of sandy soil to static liquefaction and microtomography. Arab J Geosci 6, 2211–2224 (2013). https://doi.org/10.1007/s12517-012-0534-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12517-012-0534-5

Keywords

Navigation