Skip to main content
Log in

A coupled numerical–experimental study of the breakage process of brittle substances

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Pre-existing cracks in brittle substances seem to be the main cause of their breakage under various loading conditions. In the present paper, a coupled numerical–experimental analysis of crack propagation, cracks coalescence, and breakage process of brittle substances such as rocks and rock-like samples have been studied. The numerical analyses are accomplished using a numerical code based on the Higher order Displacement Discontinuity Method for Crack (HDDMCR2D) analysis. A quadratic displacement discontinuity variation along each boundary element is assumed to evaluate the Mode I and Mode II stress intensity factors. Based on the linear elastic fracture mechanics theory, the maximum tangential stress criterion (i.e., a mixed mode fracture criterion) is implemented in the HDDMCR2D code for predicting the crack initiation and its direction of propagation (cracks propagation path). Some numerical and analytical problems in finite and infinite planes are solved numerically by the proposed numerical method, and the results are compared in different tables illustrating the accuracy and validity of the numerical results. Experimental tests are also being done to evaluate the final breakage path and cracks initiation and cracks coalescence stresses in rock-like specimens containing two random cracks. The numerical and experimental results obtained from the tested specimens show a good agreement between the corresponding values and demonstrate the accuracy and effectiveness of the approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Afifipour M, Moarefvand P (2013) Failure patterns of geomaterials with block-in-matrix texture: experimental and numerical evaluation. Arab J Geosci. doi:10.1007/s12517-013-0907-4

    Google Scholar 

  • Al Fouzan F, Dafalla MA (2013) Study of cracks and fissures phenomenon in central Saudi Arabia by applying geotechnical techniques. Arab J Geosci. doi:10.1007/s12517-013-0884-7

    Google Scholar 

  • Aliabadi MH (1998) Fracture of rocks. Computational Mechanics, Southampton

    Google Scholar 

  • Aliabadi MH, Rooke DP (1991) Numerical fracture mechanics. Computational Mechanics, Southampton

    Book  Google Scholar 

  • Behnia M, Goshtasbi K, Marji MF, Golshani A (2011) On the crack propagation modeling of hydraulic fracturing by a hybridized displacement discontinuity/boundary collocation method. J Min Environ 2:1–16 (Shahrood University, Shahrood, Iran)

    Google Scholar 

  • Behnia M, Goshtasbi K, Marji MF, Golshani A (2013) Numerical simulation of crack propagation in layered formations. Arab J Geosci. doi:10.1007/s12517-013-0885-6

    Google Scholar 

  • Bobet A, Einstein HH (1998a) Fracture coalescence in rock-type materials under uniaxial and biaxial compression. Int J Rock Mech Min Sci 35:863–888. doi:10.1016/S0148-9062(98)00005-9

    Article  Google Scholar 

  • Bobet A, Einstein HH (1998b) Numerical modeling of fracture coalescence in a model rock material. Int J Fract 92:221–252. doi:10.1023/A:1007460316400

    Article  Google Scholar 

  • Bordas S, Rabczuk T, Zi G (2008) Three-dimensional crack initiation, propagation, branching and junction in non-linear materials by an extended meshfree method without asymptotic enrichment. Eng Fract Mech 75:943–960.doi:10.1016/j.engfracmech.2007.05.010

  • Chen JT, Hong HK (1999) Review of dual boundary elements methods with emphasis on hyper singular integrals and divergent series. Appl Mech Rev ASME 52:17–33. doi:10.1115/1.3098922

    Article  Google Scholar 

  • Crouch SL, Starfield AM (1983) Boundary element methods in solid mechanics. Allen and Unwin, London

    Google Scholar 

  • Erdogan F, Sih GC (1963) On the crack extension in plates under loading and transverse shear. J Fluids Eng 85:519–527. doi:10.1115/1.3656897

    Google Scholar 

  • Ghazvinian A, Nejati HR, Sarfarazi V, Hadei MR (2012) Mixed mode crack propagation in low brittle rock-like materials. Arab J Geosci. doi:10.1007/s12517-012-0681-8

    Google Scholar 

  • Golshani A, Okui Y, Oda M, Takemura T (2005) Micromechanical model for brittle failure of rock and its relation to crack growth observed in triaxial compression tests of granite. Mech Mater 38:287–303. doi:10.1016/j.mechmat.2005.07.003

    Article  Google Scholar 

  • Guo H, Aziz NI, Schmidt RA (1990) Linear elastic crack tip modeling by displacement discontinuity method. Eng Fract Mech 36:933–943. doi:10.1016/0013-7944(90)90269-M

    Article  Google Scholar 

  • Guo H, Aziz NI, Schmidt RA (1992) Rock cutting study using linear elastic fracture mechanics. Eng Fract Mech 41:771–778. doi:10.1016/0013-7944(92)90159-C

    Article  Google Scholar 

  • Haeri H (2011) Numerical modeling of the interaction between micro and macro cracks in the rock fracture mechanism using displacement discontinuity method. Ph.D. thesis, Department of Mining Engineering, Science and Research branch, Islamic Azad University, Tehran, Iran, during work

  • Haeri H, Ahranjani KA (2012) A fuzzy logic model to predict crack propagation angle under disc cutters of TBM. Int J Acad Res 4:159–169. doi:10.7813/2075-4124.2013

    Google Scholar 

  • Haeri H, Shahriar K, Marji MF, Moarefvand P (2013) Modeling the propagation mechanism of two random micro cracks in rock samples under uniform tensile loading. Proceedings of the 13th International Conference on Fracture, Beijing, China, June 16–21

  • Hoek E, Bieniawski ZT (1965) Brittle rock fracture propagation in rock under compression. South African Council for Scientific and Industrial Research Pretoria. Int J Frac Mech 1:137–155. doi:10.1007/BF00186851

    Google Scholar 

  • Horii H, Nemat-Nasser S (1985) Compression-induced micro crack growth in brittle solids: axial splitting and shear failure. J Geophys Res 90:3105–3125. doi:10.1029/JB090iB04p03105

    Article  Google Scholar 

  • Huang JF, Chen GL, Zhao YH, Wang R (1990) An experimental study of the strain field development prior to failure of a marble plate under compression. Tectonophysics 175:269–284. doi:10.1016/0040-1951(90)90142-U

    Article  Google Scholar 

  • Hussian MA, Pu EL, Underwood JH (1974) Strain energy release rate for a crack under combined mode I and mode II. In: Fracture Analysis. ASTM STP 560. American Society for Testing and Materials, pp. 2–28. doi:10.1520/STP33130S

  • Ichikawa Y, Kawamura K, Uesugi K, Seo YS, Fujii N (2001) Micro-and macro behavior of granitic rock: observations and viscoelastic homogenization analysis. Comput Methods Appl Mech Eng 191:47–72. doi:10.1016/S0045-7825(01)00244-4

    Article  Google Scholar 

  • Ingraffea AR (1985) Fracture propagation in rock. In: Bazant Z (ed) Mechanics of geomaterials. Wiley, Hoboken, pp. 219–258

  • Janeiro RP, Einstein HH (2010) Experimental study of the cracking behavior of specimens containing inclusions (under uniaxial compression). Int J Fract 164:83–102. doi:10.1007/s10704- 010-9457-x

    Article  Google Scholar 

  • Ke CC, Chen CS, Tu CH (2008) Determination of fracture toughness of anisotropic rocks by boundary element method. Rock Mech Rock Eng 41:509–538. doi:10.1007/s00603-005 0089-9

    Article  Google Scholar 

  • Lee H, Jeon S (2011) An experimental and numerical study of fracture coalescence in precracked specimens under uniaxial compression. Int J Solids Struct 48:979–999. doi:10.1016/j.ijsolstr.2010.12.001

    Article  Google Scholar 

  • Li H, Wong LNY (2012) Influence of flaw inclination angle and loading condition on crack initiation and propagation. Int J Solids Struct 49:2482–2499. doi:10.1016/j.ijsolstr.2012.05.012

    Article  Google Scholar 

  • Li T, Yang W (2001) Expected coalescing length of displacement loading collinear micro cracks. Theor Appl Fract Mech 36:17–21. doi:10.1016/S0167-8442(01)00052-0

    Article  Google Scholar 

  • Li YP, Chen LZ, Wang YH (2005) Experimental research on pre-cracked marble under compression. Int J Solids Struct 42:2505–2516. doi:10.1016/j.ijsolstr.2004.09.033

    Article  Google Scholar 

  • Ma K, Tang CA, Li LC, Ranjih PG, Cai M, Xu NW (2012) 3Dmodeling of stratified and irregularly jointed rock slope and its progressive failure. Arab J Geosci 6:2141–2163. doi:10.1007/s12517-012-0578-6

    Google Scholar 

  • Manouchehrian A, Marji MF (2012) Numerical analysis of confinement effect on crack propagation mechanism from a flaw in a pre-cracked rock under compression. Acta Mech Sinica 28:1389–1397. doi:10.1007/s10409-012-0145-0

    Article  Google Scholar 

  • Marji MF (1997) Modeling of cracks in rock fragmentation with a higher order displacement discontinuity method, Ph.D. thesis, Middle East Technical University, Turkey, Ankara

  • Marji MF (2013) On the Use of power series solution method in the crack analysis of brittle materials by indirect boundary element method. Eng Fract Mech 98:365–382. doi:10.1016/j.engfracmech.2012.11.015

  • Marji MF, Dehghani I (2010) Kinked crack analysis by a hybridized boundary element/boundary collocation method. Int J Solids Struct 47:922–933. doi:10.1016/j.ijsolstr.2009.12.008

    Article  Google Scholar 

  • Marji MF, Hosseinin Nasab H, Kohsary AH (2006) On the uses of special crack tip elements in numerical rock fracture mechanics. Int J Solids Struct 43:1669–1692. doi:10.1016/j.ijsolstr.2005.04.042

    Article  Google Scholar 

  • Oguni K, Wijerathne L, Okinaka T, Hori M (2009) Crack propagation analysis using PDS-FEM and comparison with fracture experiment. Mech Mater 41:1242–1252. doi:10.1016/j.mechmat.2009.07.003

    Article  Google Scholar 

  • Oliver J, Huespe AE, Sanchez PJ (2006) A comparative study on finite elements for capturing strong discontinuities: E-FEM vs X-FEM. Comput Methods Appl Mech Eng 195:4732–4752. doi:10.1016/j.cma.2005.09.020

    Article  Google Scholar 

  • Park CH (2008) Coalescence of frictional fractures in rock materials. Ph.D. thesis, Purdue University West Lafayette, Indiana

  • Park CH, Bobet A (2009) Crack coalescence in specimens with open and closed flaws: a comparison. Int J Rock Mech Min Sci 46:819–829. doi:10.1016/j.ijrmms.2009.02.006

    Article  Google Scholar 

  • Park CH, Bobet A (2010) Crack initiation, propagation and coalescence from frictional flaws in uniaxial compression. Eng Fract Mech 77:2727–2748. doi:10.1016/j.engfracmech.2010.06.027

    Article  Google Scholar 

  • Rabczuk T, Bordas S, Zi G (2007) A three-dimensional meshfree method for continuous multiple-crack initiation, propagation and junction in statics and dynamics. Comput Mech 40:473–495. doi:10.1007/s00466-006-0122-1

    Article  Google Scholar 

  • Reyes O, Einstein HH (1991) Failure mechanism of fractured rock—a fracture coalescence model. Proceedings of the 7th ISRM Congress, Aachen, Germany, pp. 333–340

  • Sagong M, Bobet A (2002) Coalescence of multiple flaws in a rock-model material in uniaxial compression. Rock Mech Min Sci 39:229–241. doi:10.1016/S1365 1609(02)00027-8

    Article  Google Scholar 

  • Sahouryeh E, Dyskin AV, Germanovich LN (2002) Crack growth under biaxial compression. Eng Fract Mech 69:2187–2198. doi:10.1016/S0013-7944(02)00015-2

    Article  Google Scholar 

  • Scavia C (1990) Fracture mechanics approach to stability analysis of crack slopes. Eng Fract Mech 35:889–910. doi:10.1029/95JB00040

    Article  Google Scholar 

  • Shen, B, Stephansson O (1994) Modification of the G-criterion for crack propagation subjected to compression. Eng Fract Mech 47:177–189. doi: 10.1016/0013-7944(94)90219-4

  • Shen B, Stephansson O, Einstein HH, Ghahreman B (1995) Coalescence of fractures under shear stress in experiments. J Geophys Res Solid Earth 100:5975–5990. doi:10.1029/95JB00040

    Article  Google Scholar 

  • Shou KJ, Crouch SL (1995) A higher order displacement discontinuity method for analysis of crack problems. Int J Rock Mech Min Sci Geomech Abstr 32:49–55. doi:10.1016/0148-9062(94)00016-V

    Google Scholar 

  • Sih GC (1974) Strain–energy–density factor applied to mixed mode crack problems. Int J Fract 10:305–321. doi:10.1007/BF00035493

    Article  Google Scholar 

  • Stan F (2008) Discontinuous Galerkin method for interface crack propagation. Int J Mater Form 1:1127–1130. doi:10.1007/s12289-008-0178-x

    Article  Google Scholar 

  • Sukumar N, Moran B, Black T, Belytschko T (1997) An element-free Galerkin method for three dimensional fracture mechanics. Comput Mech 20:170–175. doi:10.1007/s004660050235

    Article  Google Scholar 

  • Verma AK, Singh TN (2010) Modeling of a jointed rock mass under triaxial conditions. Arab J Geosci 3:91–103. doi:10.1007/s12517-009-0063-z

    Article  Google Scholar 

  • Whittaker BN, Singh RN, Sun Q (1992) Rock fracture mechanics, principals, design and applications, developments in geotechnical engineering. Elsevier, Amsterdam

    Google Scholar 

  • Wong RHC, Chau KT (1998) Crack coalescence in a rock-like material containing two cracks. Int J Rock Mech Min Sci 35:147–164. doi:10.1016/S0148-9062(97)00303-3

    Article  Google Scholar 

  • Wong LNY, Einstein HH (2006) Fracturing behavior of prismatic specimens containing single flaws, Golden Rocks, proceedings of 41st U.S. Symposium on Rock Mechanics (USRMS): 50 Years of Rock Mechanics-Landmarks and Future Challenges, Golden, Colorado

  • Wong RHC, Chau KT, Tang CA, Lin P (2001) Analysis of crack coalescence in rock-like materials containing three flaws—part I: experimental approach. Int J Rock Mech Min Sci 38:909–924. doi:10.1016/S1365-1609(01)00064-8

    Article  Google Scholar 

  • Wong RHC, Tang CA, Chau KT, Lin P (2002) Splitting failure in brittle rocks containing pre-existing flaws under uniaxial compression. Eng Fract Mech 69:1853–1871. doi:10.1016/S0013-7944(02)00065-6

    Article  Google Scholar 

  • Yang SQ (2011) Crack coalescence behavior of brittle sandstone samples containing two coplanar fissures in the process of deformation failure. Eng Fract Mech 78:3059–3081. doi:10.1016/j.engfracmech.2011.09.002

    Article  Google Scholar 

  • Yang Q, Dai YH, Han LJ, Jin ZQ (2009) Experimental study on mechanical behavior of brittle marble samples containing different flaws under uniaxial compression. Eng Fract Mech 76:1833–1845. doi:10.1016/j.engfracmech.2009.04.005

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadi Haeri.

Appendices

Appendix 1

The integrals and their derivatives used for quadratic displacement discontinuity elements (with equal sub-elements) for finite and infinite plane fracture mechanics problems

Starting from the common potential function F(x,y) expressed by Marji et al. (2006) for the solution of stress and displacement fields at the discretized boundaries using the displacement discontinuity function, DD  j (δ) given in Eq. (1):

$$ F\left(x,y\right)=\frac{-1}{4\pi \kern0.24em \left(1-\nu\;\right)}{\displaystyle \underset{-\mathcal{l}}{\overset{\mathcal{l}}{\int }}{\operatorname{DD}}_j\left(\delta \right) \ln {\left[{\left(x-\delta \right)}^2+{y}^2\right]}^{\frac{1}{2}}\operatorname{d}\delta, \kern0.5em j=x,y\kern0.24em } $$
(9)

Inserting the common displacement discontinuity function DD  j (δ) (Eq. 1) in Eq. (9) gives:

$$ \begin{array}{l}F\left(x,y\right)=\frac{-1}{4\pi \kern0.24em \left(1-\nu\;\right)}\left\{\left[{\displaystyle \underset{-\mathcal{l}}{\overset{\mathcal{l}}{\int }}{\varGamma}_1\left(\delta \right) \ln {\left[{\left(x-\delta \right)}^2+{y}^2\right]}^{\frac{1}{2}}\operatorname{d}\delta}\right]\right.{\operatorname{DD}}_j^1+\\ {}\left[{\displaystyle \underset{-\mathcal{l}}{\overset{\mathcal{l}}{\int }}{\varGamma}_2\left(\delta \right) \ln }{\left[{\left(x-\delta \right)}^2+{y}^2\right]}^{\frac{1}{2}}\operatorname{d}\delta \right]{\operatorname{DD}}_j^2\kern0.36em +\left[{\displaystyle \underset{-\mathcal{l}}{\overset{\mathcal{l}}{\int }}{\varGamma}_3\left(\delta \right) \ln }{\left[{\left(x-\delta \right)}^2+{y}^2\right]}^{\frac{1}{2}}\operatorname{d}\delta \right]{\operatorname{DD}}_j^3,j=x,y\kern0.6em \\ {}\kern0.96em \end{array} $$
(10)

Inserting the shape functions Γ 1(δ), Γ 2(δ), and Γ 3(δ) in Eq. (10) after some manipulations and rearrangements the following three special integrals are deduced:

$$ {I}_1\left(x,y\right)={{\displaystyle \underset{-\mathcal{l}}{\overset{\mathcal{l}}{\int }} \ln \left[{\left(x-\delta \kern0.24em \right)}^2+{y}^2\right]}}^{\frac{1}{2}}\operatorname{d}\delta =y\left({\phi}_1-{}_2\right)-\left(x-\mathcal{l}\right) \ln \left({\eta}_1\right)+\left(x+\mathcal{l}\right) \ln \left({\eta}_2\right)-2\mathcal{l} $$
(11)
$$ {I}_2\left(x,y\right)={{\displaystyle \underset{-\mathcal{l}}{\overset{\mathcal{l}}{\int }}\delta \kern0.36em \ln \left[{\left(x-\delta \kern0.24em \right)}^2+{y}^2\right]}}^{\frac{1}{2}}\operatorname{d}\delta = xy\left({\phi}_1-{\phi}_2\right)+0.5\left({y}^2-{x}^2+{\mathcal{l}}^2\right) \ln \frac{\eta_1}{\eta_2}-\mathcal{l}x $$
(12)
$$ \begin{array}{c}\hfill {I}_3\left(x,y\right)={{\displaystyle \underset{-\mathcal{l}}{\overset{\mathcal{l}}{\int }}{\delta}^{\;2} \ln \left[{\left(x-\delta\;\right)}^2+{y}^2\right]}}^{\frac{1}{2}}\operatorname{d}\delta =\frac{y}{3}\left(3{x}^2-{y}^2\right)\left({\phi}_1-{\phi}_2\right)+\frac{1}{3}\left(3x{y}^2-{x}^3+{a}^3\right) \ln \left({\eta}_1\right)\hfill \\ {}\hfill -\frac{1}{3}\left(3x{y}^2-{x}^3-{\mathcal{l}}^3\right) \ln \left({\eta}_2\right)-\frac{2\mathcal{l}}{3}\left({x}^2-{y}^2+\frac{{\mathcal{l}}^2}{3}\right)\hfill \end{array} $$
(13)

Where ϕ 1, ϕ 2, η 1, and η 2 can be defined as:

$$ {\phi}_1= \arctan \left(\frac{y}{x-\mathcal{l}}\right),\kern0.72em {\phi}_2= \arctan \left(\frac{y}{x+\mathcal{l}}\right),{\eta}_1={\left[{\left(x-\mathcal{l}\right)}^2+{y}^2\right]}^{\frac{1}{2}}\ \mathrm{and}\kern0.84em {\eta}_2={\left[{\left(x+\mathcal{l}\right)}^2+{y}^2\right]}^{\frac{1}{2}} $$
(14)

Appendix 2

The integrals and their derivatives used for three special crack tip elements of equal length for finite and infinite plane fracture mechanics problems

Starting from the common special potential function F C (x,y) expressed by Marji et al. (2006) for the solution of stress and displacement fields at the crack tip using the displacement discontinuity function, DD  j (δ) given in Eq. (4):

$$ {F}_C\left(x,y\right)=\frac{-1}{4\pi \kern0.24em \left(1-\nu \right)\;}{\displaystyle \underset{-\mathcal{l}}{\overset{\mathcal{l}}{\int }}{\operatorname{DD}}_j\left(\delta \right) \ln {\left[{\left(x-\delta \right)}^2+{y}^2\right]}^{\frac{1}{2}}\operatorname{d}\delta, \kern0.5em j=x,y\kern0.24em } $$
(15)

Inserting the common displacement discontinuity function, DD  j (δ) (Eq. 3) in Eq. (15) gives:

$$ \begin{array}{l}\begin{array}{c}\hfill {F}_C\left(x,y\right)=\frac{-1}{4\pi \kern0.24em \left(1-\nu \right)\;}\left\{\left[{\displaystyle \underset{-\mathcal{l}}{\overset{\mathcal{l}}{\int }}{\varGamma}_{C1}\left(\delta \right) \ln {\left[{\left(x-\delta \right)}^2+{y}^2\right]}^{\frac{1}{2}}\operatorname{d}\delta}\right]{\operatorname{DD}}_j^1+\right.\hfill \\ {}\hfill \left[{\displaystyle \underset{-\mathcal{l}}{\overset{\mathcal{l}}{\int }}{\varGamma}_{C2}\left(\delta \right) \ln }{\left[{\left(x-\delta \right)}^2+{y}^2\right]}^{\frac{1}{2}}\operatorname{d}\delta \right]{\operatorname{DD}}_j^2\kern0.36em +\left[{\displaystyle \underset{-\mathcal{l}}{\overset{\mathcal{l}}{\int }}{\varGamma}_{C3}\left(\delta \right) \ln }{\left[{\left(x-\delta \right)}^2+{y}^2\right]}^{\frac{1}{2}}\operatorname{d}\delta \right]{\operatorname{DD}}_j^3,j=x,y\hfill \end{array}\\ {}\;\end{array} $$
(16)

Inserting the shape functions Γ C1(δ), Γ C2(δ), and Γ C3(δ) in Eq. (16) after some manipulations and rearrangements the following three special integrals are deduced:

$$ \begin{array}{c}\hfill {I}_{C1}\left(x,y\right)={\displaystyle \underset{-\mathcal{l}}{\overset{\mathcal{l}}{\int }}{\delta}^{\frac{1}{2}} \ln {\left[{\left(x-\delta \right)}^2+{y}^2\right]}^{\frac{1}{2}}\operatorname{d}\delta },\kern0.5em \hfill \\ {}\hfill {I}_{C2}\left(x,y\right)={\displaystyle \underset{-\mathcal{l}}{\overset{\mathcal{l}}{\int }}{\delta}^{\frac{3}{2}} \ln {\left[{\left(x-\delta \right)}^2+{y}^2\right]}^{\frac{1}{2}}\operatorname{d}\delta}\hfill \\ {}\hfill {I}_{C3}\left(x,y\right)={\displaystyle \underset{-\mathcal{l}}{\overset{\mathcal{l}}{\int }}{\delta}^{\frac{5}{2}} \ln {\left[{\left(x-\delta \right)}^2+{y}^2\right]}^{\frac{1}{2}}\operatorname{d}\delta}\hfill \end{array} $$
(17)

The derivatives of the integrals, I C1, I C2, are given by Marji et al. (2006) and the first two derivatives of I C3 (for three special crack tip element case) can be expressed as:

$$ \begin{array}{c}\hfill {I}_{C,x}^3=x{\displaystyle \underset{0}{\overset{2\mathcal{l}}{\int }}\frac{\delta^{\frac{5}{2}}}{\left[{\left(x-\delta \right)}^2+{y}^2\right]}}\operatorname{d}\delta -{\displaystyle \underset{0}{\overset{2\mathcal{l}}{\int }}\frac{\delta^{\frac{7}{2}}}{\left[{\left(x-\delta \right)}^2+{y}^2\right]}}\operatorname{d}\delta =x{\varOmega}_3-{\varOmega}_4\hfill \\ {}\hfill {I}_{C,y}^3=y{\displaystyle \underset{0}{\overset{2\mathcal{l}}{\int }}\frac{\delta^{\frac{5}{2}}}{\left[{\left(x-\delta \right)}^2+{y}^2\right]}}\operatorname{d}\delta =y{\varOmega}_3\hfill \end{array} $$
(18)

Where

$$ {\varOmega}_3={\displaystyle \underset{0}{\overset{2\mathcal{l}}{\int }}\frac{\delta^{\frac{5}{2}}}{\left[{\left(x-\delta \right)}^2+{y}^2\right]}}\operatorname{d}\delta =\frac{2}{3}{(2a)}^{\frac{3}{2}}+2x{\varOmega}_2-\left({x}^2+{y}^2\right)\varOmega {}_1 $$
(19)

where Ω 1, Ω 2, and the derivatives of Ω 1, are defined by Marji et al. (2006) as:

$$ \begin{array}{l}\begin{array}{c}\hfill {\varOmega}_1={\displaystyle \underset{-\mathcal{l}}{\overset{\mathcal{l}}{\int }}\frac{\delta^{\frac{1}{2}}}{\left[{\left(x-\delta \right)}^2+{y}^2\right]}\operatorname{d}\delta }=\hfill \\ {}\hfill {\lambda}^{-1}\left[\begin{array}{l}0.5\left( \cos \varphi -\left(\frac{x}{y}\right) \sin \beta \right) \ln \frac{2\mathcal{l}-2\sqrt{2\mathcal{l}}\;\rho \cos \beta +{\lambda}^2}{2\mathcal{l}+2\sqrt{2\mathcal{l}}\;\rho \cos \beta +{\lambda}^2}+\left( \sin \beta +\left(\frac{x}{y}\right) \cos \beta \right)\times \\ {} \arctan \left(\frac{2\sqrt{2\mathcal{l}}\;\rho \sin \beta }{\lambda^2-2\mathcal{l}}\right)\end{array}\right]\hfill \end{array}\\ {}\kern5.12em \end{array} $$
(20)
$$ \begin{array}{c}\hfill {\varOmega}_2={\displaystyle \underset{-\mathcal{l}}{\overset{\mathcal{l}}{\int }}\frac{\delta^{\frac{3}{2}}}{\left[{\left(x-\delta \right)}^2+{y}^2\right]}\operatorname{d}\delta }=\hfill \\ {}\hfill\ \lambda\;\left[\begin{array}{l}0.5\left( \cos \beta +\left(\frac{x}{y}\right) \sin \beta \right) \ln \frac{2\mathcal{l}-2\sqrt{2\mathcal{l}}\;\lambda \cos \beta +{\lambda}^2}{2\mathcal{l}+2\sqrt{2\mathcal{l}}\;\lambda \cos \beta +{\lambda}^2}+\left( \sin \beta +\left(\frac{x}{y}\right) \cos \beta \right)\times \\ {} \arctan \left(\frac{2\sqrt{2\mathcal{l}}\;\rho \sin \beta }{\lambda^2-2\mathcal{l}}\right)\end{array}\right]\hfill \end{array} $$
(21)

where \( \lambda ={\left({x}^2+{y}^2\right)}^{\frac{1}{4}},\mathrm{and}\ \beta =0.5 \arctan \left(y/x\right) \),

and finally

$$ {\varOmega}_4={\displaystyle \underset{0}{\overset{2\mathcal{l}}{\int }}\frac{\delta^{\frac{7}{2}}}{\left[{\left(x-\delta \right)}^2+{y}^2\right]}}\operatorname{d}\delta =\frac{2}{5}{\left(2\mathcal{l}\right)}^{\frac{5}{2}}+2x{\varOmega}_3-\left({x}^2+{y}^2\right)\varOmega {}_2 $$
(22)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haeri, H., Shahriar, K., Marji, M.F. et al. A coupled numerical–experimental study of the breakage process of brittle substances. Arab J Geosci 8, 809–825 (2015). https://doi.org/10.1007/s12517-013-1165-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12517-013-1165-1

Keywords

Navigation