Skip to main content
Log in

Electro-coagulation treatment of raw and autoclaved landfill leachate with aluminum electrodes: case study of Djebel Chakir (Tunisia)

  • iCAGE 2016
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Landfilling is a common practice worldwide for solid waste management. The leachate generated at landfill sites contains various organic and inorganic pollutants while it should be treated properly. In this study, the electrocoagulation (EC) process was recognized for its simplicity and effectiveness which was used for the treatment of leachate from the Djebel Chakir landfill site in northern Tunisia. In addition, we investigated the effect of microorganisms (e.g., bacteria, fungi, spore) on sludge production by the application of autoclaving treatment on raw leachate. The application of low current density (15 mA/cm2) within 2 h of treatment and using Al-Al electrodes revealed significant improvement of performance when autoclaving was applied. The chemical oxygen demand (COD) and nitrogen removal increased from 39 to 64% and from 13 to 30%, respectively. The sludge volume was reduced from 40 to 10%, and thus, its handling and disposal costs would be significantly decreased. The energy consumption rate was stable after 40 min of treatment at about 0.8 kWh/kg COD removed. Our study shows that removal of microorganisms by autoclaving prior to the EC process is promising for landfill leachate treatment. However, since autoclaving is far from being practical and cost-effective at full-scale plant, research on coupling EC with an alternative disinfecting process might be of great interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • AFNOR (2000) Qualité de l'eau Dosage de l'ammonium Partie 1: Méthode par titrimétrie après entraînement à la vapeur. NF T90–015-1, AFNOR

  • Asselin M, Drogui P, Benmoussa H, Blais JF (2008) Effectiveness of electrocoagulation process in removing organic compounds from slaughterhouse wastewater using monopolar and bipolar electrolytic cells. Chemosphere 72:1727–1733. doi:10.1016/j.chemosphere.2008.04.067

    Article  Google Scholar 

  • Attour A, Touati M, Tlili M, Ben Amor M, Lapicque F, Leclerc JP (2014) Influence of operating parameters on phosphate removal from water by electrocoagulation using aluminum electrodes. Sep Purif Technol 123:124–129. doi:10.1016/j.seppur.2013.12.030

    Article  Google Scholar 

  • Bouhezila F, Hariti M, Lounici H, Mameri N (2011) Treatment of the OUED SMAR town landfill leachate by an electrochemical reactor. Desalination 280:347–353. doi:10.1016/j.desal.2011.07.032

    Article  Google Scholar 

  • Butler E, Hung Y-T, Yeh RY-L, Suleiman Al Ahmad M (2011) Electrocoagulation in wastewater treatment. Water 3:495–525. doi:10.3390/w3020495

    Article  Google Scholar 

  • Cañizares P, Jiménez C, Martínez F, Rodrigo MA, Sáez C (2009) The pH as a key parameter in the choice between coagulation and electrocoagulation for the treatment of wastewaters. J Hazard Mater 163:158–164. doi:10.1016/j.jhazmat.2008.06.073

    Article  Google Scholar 

  • Chen X, Chen G, Yue PL (2000) Separation of pollutants from restaurant wastewater by electrocoagulation. Sep Purif Technol 19:65–76. doi:10.1016/s1383-5866(99)00072-6

    Article  Google Scholar 

  • Chiang L-C, Chang J-E, Wen T-C (1995) Electrochemical treatability of refractory pollutants in landfill leachate. Hazard Waste Hazard Mater 12:71–82. doi:10.1089/hwm.1995.12.71

    Article  Google Scholar 

  • Christensen T, Cossu R, Stegmann R (1992) Landfilling of waste: leachate. E & FN Spon, London

    Google Scholar 

  • Davis ML (2011) Water and wastewater engineering: design principles and practice. McGraw-Hill, New York

    Google Scholar 

  • Ennouri H, Miladi B, Diaz SZ, Güelfo LAF, Solera R, Hamdi M, Bouallagui H (2016) Effect of thermal pretreatment on the biogas production and microbial communities balance during anaerobic digestion of urban and industrial waste activated sludge. Bioresour Technol 214:184–191. doi:10.1016/j.biortech.2016.04.076

    Article  Google Scholar 

  • Fekete É, Lengyel B, Cserfalvi T, Pajkossy T (2016) Electrochemical dissolution of aluminium in electrocoagulation experiments. J Solid State Electrochem 20:3107–3114. doi:10.1007/s10008-016-3195-6

    Article  Google Scholar 

  • Feki F, Aloui F, Feki M, Sayadi S (2009) Electrochemical oxidation post-treatment of landfill leachates treated with membrane bioreactor. Chemosphere 75:256–260. doi:10.1016/j.chemosphere.2008.12.013

    Article  Google Scholar 

  • Fernandes A, Santos D, Pacheco MJ, Ciríaco L, Lopes A (2014) Nitrogen and organic load removal from sanitary landfill leachates by anodic oxidation at Ti/Pt/PbO2, Ti/Pt/SnO2-Sb2O4 and Si/BDD. Appl Catal B Environ 148-149:288–294. doi:10.1016/j.apcatb.2013.10.060

    Article  Google Scholar 

  • Harif T, Khai M, Adin A (2012) Electrocoagulation versus chemical coagulation: coagulation/flocculation mechanisms and resulting floc characteristics. Water Res 46:3177–3188. doi:10.1016/j.watres.2012.03.034

    Article  Google Scholar 

  • Holt PK, Barton GW, Wark M, Mitchell CA (2002) A quantitative comparison between chemical dosing and electrocoagulation. Colloids Surf A Physicochem Eng Asp 211:233–248. doi:10.1016/s0927-7757(02)00285-6

    Article  Google Scholar 

  • Ilhan F, Kurt U, Apaydin O, Gonullu MT (2008) Treatment of leachate by electrocoagulation using aluminum and iron electrodes. J Hazard Mater 154:381–389. doi:10.1016/j.jhazmat.2007.10.035

    Article  Google Scholar 

  • Khaled B, Wided B, Béchir H, Elimame E, Mouna L, Zied T (2015) Investigation of electrocoagulation reactor design parameters effect on the removal of cadmium from synthetic and phosphate industrial wastewater Arabian Journal of Chemistry doi:10.1016/j.arabjc.2014.12.012

  • Kjeldsen P, Barlaz MA, Rooker AP, Baun A, Ledin A, Christensen TH (2002) Present and long-term composition of MSW landfill leachate: a review. Crit Rev Environ Sci Technol 32:297–336. doi:10.1080/10643380290813462

    Article  Google Scholar 

  • Li X, Song J, Guo J, Wang Z, Feng Q (2011) Landfill leachate treatment using electrocoagulation. Procedia Environ Sci 10:1159–1164. doi:10.1016/j.proenv.2011.09.185

    Article  Google Scholar 

  • Majlesi M, Mohseny SM, Sardar M, Golmohammadi S, Sheikhmohammadi A (2016) Improvement of aqueous nitrate removal by using continuous electrocoagulation/electroflotation unit with vertical monopolar electrodes. Sustain Environ Res 26:287–290. doi:10.1016/j.serj.2016.09.002

    Article  Google Scholar 

  • Mameri N, Yeddou AR, Lounici H, Belhocine D, Grib H, Bariou B (1998) Defluoridation of septentrional Sahara water of north Africa by electrocoagulation process using bipolar aluminium electrodes. Water Res 32:1604–1612. doi:10.1016/S0043-1354(97)00357-6

    Article  Google Scholar 

  • Moayerikashani M, Masoudi Soltani S (2012) Electrocoagulation of a real Malaysian leachate sample using Al electrodes to meet discharge standards. Adv Mater Res 622-623:1716–1720. doi:10.4028/www.scientific.net/amr.622-623.1716

    Article  Google Scholar 

  • Mollah MYA, Schennach R, Parga JR, Cocke DL (2001) Electrocoagulation (EC)—science and applications. J Hazard Mater 84:29–41. doi:10.1016/s0304-3894(01)00176-5

    Article  Google Scholar 

  • Nasr M, El Shahawy A (2016) Artificial intelligence for electrocoagulation treatment of olive mill wastewater. J Bioremed Biodegr 07. doi:10.4172/2155-6199.1000345

  • Norma D, Fernandes A, Pacheco MJ, Ciriaco L, Lopes A (2012) Electrocoagulation and anodic oxidation integrated process to treat leachate from a Portuguese sanitary landfill. Port Electrochim Acta 30:221–234. doi:10.4152/pea.201203221

    Article  Google Scholar 

  • Picard T, Cathalifaud-Feuillade G, Mazet M, Vandensteendam C (2000) Cathodic dissolution in the electrocoagulation process using aluminium electrodes. J Environ Monit 2:77–80. doi:10.1039/a908248d

    Article  Google Scholar 

  • Renou S, Givaudan JG, Poulain S, Dirassouyan F, Moulin P (2008) Landfill leachate treatment: review and opportunity. J Hazard Mater 150:468–493. doi:10.1016/j.jhazmat.2007.09.077

    Article  Google Scholar 

  • Rodier J, Legube B, Merlet N (2009) L'analyse de l'eau-Eaux naturelles, eaux résiduaires, eau de mer, 9th edn. Dunod, Paris

    Google Scholar 

  • Sahu O, Mazumdar B, Chaudhari PK (2014) Treatment of wastewater by electrocoagulation: a review. Environ Sci Pollut Res 21:2397–2413. doi:10.1007/s11356-013-2208-6

    Article  Google Scholar 

  • Senghor F, Drogui P, Seyhi B (2015) A combined electrocoagulation-electroperoxidation process for the tertiary treatment of domestic wastewaters. Water Air Soil Pollut 226:373. doi:10.1007/s11270-015-2637-6

    Article  Google Scholar 

  • Shen F, Chen X, Gao P, Chen G (2003) Electrochemical removal of fluoride ions from industrial wastewater. Chem Eng Sci 58:987–993. doi:10.1016/s0009-2509(02)00639-5

    Article  Google Scholar 

  • Shivayogimath CB (2013) Treatment of solid waste leachate by electrocoagulation Technology. Int J Res Eng Technol 02:266–269. doi:10.15623/ijret.2013.0213047

    Google Scholar 

  • Singh TSA, Ramesh ST (2013) An experimental study of CI reactive blue 25 removal from aqueous solution by electrocoagulation using aluminum sacrificial electrode: kinetics and influence of parameters on electrocoagulation performance. Desalin Water Treat 52:2634–2642. doi:10.1080/19443994.2013.794714

    Article  Google Scholar 

  • Tchobanoglous G, Kreith F (2002) Handbook of solid waste management, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  • Tchobanoglous G, Burton FL, Stensel HD, Metcalf E (2003) Wastewater engineering: treatment and reuse. McGraw-Hill, Boston

    Google Scholar 

  • Wahidunnabi AK, Eskicioglu C (2014) High pressure homogenization and two-phased anaerobic digestion for enhanced biogas conversion from municipal waste sludge. Water Res 66:430–446. doi:10.1016/j.watres.2014.08.045

    Article  Google Scholar 

  • Xiao S, Peng J, Song Y, Zhang D, Liu R, Zeng P (2013) Degradation of biologically treated landfill leachate by using electrochemical process combined with UV irradiation. Sep Purif Technol 117:24–29. doi:10.1016/j.seppur.2013.04.024

    Article  Google Scholar 

  • Zhang Q-Q, Tian B-H, Zhang X, Ghulam A, Fang C-R, He R (2013) Investigation on characteristics of leachate and concentrated leachate in three landfill leachate treatment plants. Waste Manag 33:2277–2286. doi:10.1016/j.wasman.2013.07.021

    Article  Google Scholar 

  • Zodi S, Potier O, Lapicque F, Leclerc J-P (2009) Treatment of the textile wastewaters by electrocoagulation: effect of operating parameters on the sludge settling characteristics. Sep Purif Technol 69:29–36. doi:10.1016/j.seppur.2009.06.028

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amjad Kallel.

Additional information

This article is part of the Topical Collection on Georesources & Environmental Management.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kallel, A., Attour, A. & Trabelsi, I. Electro-coagulation treatment of raw and autoclaved landfill leachate with aluminum electrodes: case study of Djebel Chakir (Tunisia). Arab J Geosci 10, 85 (2017). https://doi.org/10.1007/s12517-017-2872-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-017-2872-9

Keywords

Navigation