Skip to main content
Log in

One, two, three phytoliths: assessing the minimum phytolith sum for archaeological studies

  • Original Paper
  • Published:
Archaeological and Anthropological Sciences Aims and scope Submit manuscript

Abstract

The number of phytolith studies has increased steadily in the last decades in palaeoecological as well as archaeological research, and phytolith analysis is currently recognised as a proper area of expertise within archaeobotany. This has led towards a strengthening in the standardisation of the different steps involved in analysis; e.g. sampling strategies, laboratory extraction or processing of plant material/soils for the creation of reference collections. In spite of this, counting procedures remain one of the areas that could be further developed. The aim of this paper is to assess representativeness of phytolith count size in archaeological samples and specifically to assess whether an increase in total number of individuals counted influences the number or distribution of morphotypes observed. Two statistical tests are performed to evaluate the representativeness of count size: phytolith sum variability analysis (PSVA) and morphotype accumulation curve (MAC). The analyses show the relationship among the number of counted phytoliths, the variability (that is, the number of different morphotypes identified) and the stabilisations of the MACs. Results allow us to support the standard count size in phytolith studies, which ranges from 250 to 300 particles. Together with a quick scan, this strategy should produce a precise and clear phytolith assemblage for archaeological studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abrantes F (2003) A 340,000 year continental climate record from tropical Africa—news from opal phytoliths from the equatorial Atlantic. Earth Planet Sci Lett 209:165–179

    Google Scholar 

  • Albert RM, Madella M (2009) (eds) Perspectives on phytolith research: 6th International Meeting on Phytolith Research. Quat Int 193(1–2):1–2

  • Albert RM, Weiner S (2001) Study of phytoliths in prehistoric ash layers from Kebara and Tabun caves using a quantitative approach. In: Meunier J, Colin F (eds) Phytoliths: applications in earth sciences and human history. Balkema, Rotterdam, pp 251–266

    Google Scholar 

  • Albert RM, Lavi O, Estroff L, Weiner S, Tsatskin A, Ronen A, Lev-Yadun S (1999) Mode of occupation of Tabun Cave, Mt Carmel, Israel during the Mousterian Period: a study of the sediments and phytoliths. J Archaeol Sci 26:1249–1260

    Google Scholar 

  • Albert RM, Weiner S, Bar-Yosef O, Meignen L (2000) Phytoliths in the Middle Palaeolithic deposits of Kebara Cave, Mt Carmel, Israel: study of the plant materials used for fuel and other purposes. J Archaeol Sci 27:931–947

    Google Scholar 

  • Albert RM, Bar-Yosef O, Meignen L, Weiner S (2003) Quantitative phytolith study of hearths from the Natufian and Middle Palaeolithic levels of Hayonim Cave (Galilee, Israel). J Archaeol Sci 30:461–480

    Google Scholar 

  • Albert RM, Bamford MK, Cabanes D (2007) Palaeoecological significance of palms at Olduvai Gorge, Tanzania, based on phytolith remains. Quat Int 193(1–2):41–48

    Google Scholar 

  • Albert RM, Shahack-Gross R, Cabanes D, Gilboa A, Lev-Yadun S, Portillo M, Sharon I, Boaretto E, Weiner S (2008) Phytolith-rich layers from the Late Bronze and Iron Ages at Tel Dor (Israel): mode of formation and archaeological significance. J Archaeol Sci 35:57–75

    Google Scholar 

  • Albert RM, Bamford MK, Esteban I (2014) Reconstruction of ancient palm vegetation landscapes using a phytolith approach. Quat Int. doi:10.1016/j.quaint.2014.06.067

    Google Scholar 

  • Alcalde G, Saña M (2008) (eds) Procés d’ocupació de la Bauma del Serrat del Pont (La Garrotxa) ente 7400 i 5480 cal aC. Publicacions Eventuals d’Arqueologia de la Garrotxa, 8. Museu Comarcal de la Garrotxa, Olot

  • Alcalde G, Molist M, Saña M (2002) Procés d’ocupació de la Bauma del Serrat del Pont (la Garrotxa) entre el 5480 i el 2900 cal aC. Publicacions Eventuals d’Arqueologia de la Garrotxa, 7. Museu Comarcal de la Garrotxa, Olot

  • Aleman JC, Canal-Subitani S, Favier C, Bremond L (2014) Influence of the local environment on lacustrine sedimentary phytolith records. Paleogeog Paleoclimatol Paleoecol 414:273–283

    Google Scholar 

  • Alexandre A, Meunier JD, Lézine AM, Vincens A, Schwartz D (1997) Phytoliths: indicators of grassland dynamics during the late Holocene in intertropical Africa. Palaeogeogr Palaeoclimatol Palaeoecol 136:213–229

    Google Scholar 

  • Alexandre A, Meunier JD, Mariotti A, Soubies F (1999) Late Holocene phytolith and carbon-isotope record from a latosol at Salitre, South-Central Brazil. Quat Res 51:187–194

    Google Scholar 

  • Badal E, Rivera D, Uzquiano P, Carrión Y (2003) La arqueobotánica en cuevas y abrigos: objetivos y métodos de muestreo. In: Buxó R, Piqué R, Alonso N (eds) La recogida de muestras en arqueobotánica. Objetivos y propuestas metodológicas: la gestión de los recursos vegetales y la transformación del paleopaisaje en el Mediterráneo occidental. Museu d’Arqueologia de Catalunya, Barcelona, pp 19–29

  • Ball T, Gardner JS, Brotherson JD (1996) Identifying phytoliths produced by the inflorescence bracts of three species of wheat (Triticum monococcum L., T. dicoccon Schrank., and T. aestivum L.) using computer-assisted image and statistical analyses. J Archaeol Sci 23:619–632

    Google Scholar 

  • Ball T, Gardner JS, Anderson N (1999) Identifying inflorescence phytoliths from selected species of wheat (Triticum monococcum, T. dicoccon, T. dicoccoides, and T. aestivum) and barley (Hordeum vulgare and H. spontaneum) (Gramineae). Am J Bot 86:1615–1623

    Google Scholar 

  • Barboni D, Bonnefille R, Alexandre A, Meunier JD (1999) Phytoliths as paleoenvironmental indicators, west side Middle Awash Valley, Ethiopia. Palaeogeogr Palaeoclimatol Palaeoecol 152:87–100

    Google Scholar 

  • Barboni D, Bremond L, Bonnefille R (2007) Comparative study of modern phytolith assemblages from inter-tropical Africa. Palaeogeogr Palaeoclimatol Palaeoecol 246(2):454–470

    Google Scholar 

  • Bennet DM, Parry DW (1980) Electron-probe microanalysis studies of silicon in the elongating basal internodes of Avena sativa (L.), Hordeum sativum (Jess.) and Triticum aestivum (L.) Ann Bot 45:541–547

    Google Scholar 

  • Benvenuto ML, Fernández Honaine M, Osterrieth M, Coronato A, Rabassa J (2013) Silicophytoliths in Holocene peatlands and fossil peat layers from Tierra del Fuego, Argentina, southernmost South America. Quat Int 287:20–33

    Google Scholar 

  • Blinnikov M, Busacca A, Whitlock C (2002) Reconstruction of the late Pleistocene grassland of the Columbia Basin, Washington, USA, based on phytolith records in loess. Palaeogeogr Palaeoclimatol Palaeoecol 177:77–101

    Google Scholar 

  • Bonomo M, Leon DC, Osterrieth M, Steffan P, Borrelli N (2013) Paleoenvironmental studies of Alfar archaeological site (mid-Holocene; Southeastern Pampas of Argentina): silicophytoliths, gastropods and archaeofauna. Quat Int 287:34–46

    Google Scholar 

  • Boyd M (2005) Phytoliths as paleoenvironmental indicators in a dune field on the northern Great Plains. J Arid Environ 61:357–375

    Google Scholar 

  • Bozarth S (1990) Diagnostic opal phytoliths from pods of selected varieties of common beans (Phaseolus vulgaris). Am Antiq 55(1):98–104

    Google Scholar 

  • Bracco R, Inda H, del Puerto L, Castiñeira C, Sprechmann P, García-Rodríguez F (2005) Relationships between Holocene sea-level variations, trophic development, and climatic change in Negra Lagoon, Southern Uruguay. J Paleolimnol 33:253–263

    Google Scholar 

  • Bremond L, Alexandre A, Hély C, Guiot J (2005) A phytolith index as a proxy of tree cover density in tropical areas: calibration with Leaf Area Index along a forest–savanna transect in southeastern Cameroon. Glob Planet Chang 45(4):277–293

    Google Scholar 

  • Burjachs F (1992) Paleobotánica y análisis polínico. In: Rodà I (ed) Ciencias, metodologías y técnicas aplicadas a la Arqueología. Ciència Oberta n°4, Universitat Autònoma de Barcelona, Bellaterra, pp 31–46

  • Burton E (2000) Sedimentary geochemistry. In: Hancock P, Skinner BJ (eds) The Oxford Companion to the Earth. Oxford Univ. Press. <http://www.oxfordreference.com/view/10.1093/acref/9780198540397.001.0001/acref-9780198540397-e-818?rskey=2Z91po&result=818>Accessed January 27th 2015.

  • Buxó R (1993) Des semences et des fruits. Cueillette et agriculture en France et en Espagne méditerranéennes du Néolithique à l’Age du Fer. Dissertation, Université de Montpellier II

  • Cabanes D (2008) L’estudi dels processos de formació dels sediments arqueològics i dels paleosòls a partir de l’anàlisi dels fitòlits, els minerals i altres microrestes. Els casos de la Gorja d’Olduvai, l’Abric Romaní, El Mirador i Tel Dor. Dissertation, Universitat Rovira i Virgili

  • Cabanes D, Weiner S, Shahack-Gross R (2011) Stability of phytoliths in the archaeological record: a dissolution study of modern and fossil phytoliths. J Archaeol Sci 38(9):2480–2490

    Google Scholar 

  • Calegari MR, Madella M, Vidal-Torrado P, Otero XL, Macias F, Osterrieth M (2013a) Opal phytolith extraction in oxisols. Quat Int 287:56–62

    Google Scholar 

  • Calegari MR, Madella M, Vidal-Torrado P, Pessenda LCR, Marques FA (2013b) Combining phytoliths and δ13C matter in Holocene palaeoenvironmental studies of tropical soils: an example of an oxisol in Brazil. Quat Int 287:47–55

    Google Scholar 

  • Carnelli AL, Madella M, Theurillat JP (2001) Biogenic silica production in selected alpine plant species and plant communities. Ann Bot 87:425–434

    Google Scholar 

  • Carnelli AL, Theurillat JP, Madella M (2004) Phytolith types and type-frequencies in subalpine-alpine plant species of the European Alps. Rev Palaeobot Palynol 129:39–65

    Google Scholar 

  • Carter JA (2002) Phytolith analysis and paleoenvironmental reconstruction from Lake Poukawa Core, Hawkes Bay, New Zealand. Glob Planet Change 33:257–267

    Google Scholar 

  • Chabal L (1997) Fôrest et sociétés en Languedoc (Néolithique final, Antiquité tardive). L’anthracologie, méthode et paléoécologie. Documents d’Archéologie Française, 63, París

  • Chabal L, Fabre L, Terral JF, Théry-Parisot I (1999) L’anthracologie, in: Ferdière A. (ed), La Botanique. Coll. “Archéologiques”. Errance, Paris, pp 43–104

  • Chao A, Chazdon RL, Colwell RK, Shen T (2005) A new statistical approach for assessing similarity of species composition with incidence and abundance data. Ecol Lett 8:148–159

    Google Scholar 

  • Coe HHG, Alexandre A, Carvalho CN, Santos GM, da Silva AS, Sousa LO, Lepsch IF (2013) Comprehensive perspectives on phytolith studies in Quaternary research changes in Holocene tree cover density in Cabo Frio (Rio de Janeiro, Brazil): evidence from soil phytolith assemblages. Quat Int 287:63–72

    Google Scholar 

  • Cordova CE (2013) C3 Poaceae and Restionaceae phytoliths as potential proxies for reconstructing winter rainfall in South Africa. Quat Int 287:121–140

    Google Scholar 

  • Cramer MJ, Willig MR (2005) Habitat heterogeneity, species diversity and null models. Oikos 108:209–218

    Google Scholar 

  • Delhon C, Alexandre A, Berger JF, Thiébault S, Brochier JL, Meunier JD (2003) Phytolith assemblages as a promising tool for reconstructing Mediterranean Holocene vegetation. Quat Res 59:48–60

    Google Scholar 

  • del Puerto L, Bracco R, Inda H, Gutiérrez O, Panario D, García-Rodríguez F (2013) Assessing links between late Holocene climate change and paleolimnological development of Peña Lagoon using opal phytoliths, physical, and geochemical proxies. Quat Int 287(0):89–100

    Google Scholar 

  • Drakare S, Lennon JJ, Hillebrand H (2005) The imprint of the geographical, evolutionary and ecological context on species–area relationships. Ecol Lett 9(2):215–227

    Google Scholar 

  • Dotte‐Sarout E, Carah X, Byrne C (2015) Not just carbon: assessment and prospects for the application of anthracology in Oceania. Archaeol Ocean 50(1):1–22

  • Fairbairn AS, Jenkins E, Baird D, Jacobsen G (2014) 9th millennium plant subsistence in the central Anatolian highlands: new evidence from Pınarbas, Karaman Province, central Anatolia. J Archaeol Sci 41:801–812

    Google Scholar 

  • Fearn ML (1998) Phytoliths in sediment as indicators of grass pollen source. Rev Palaeobot Palynol 103(1–2):75–81

    Google Scholar 

  • Fernández Honaine M, Osterrieth ML, Zucol AF (2009) Plant communities and soil phytolith assemblages relationship in native grasslands from southeastern Buenos Aires province, Argentina. Catena 76:89–96

    Google Scholar 

  • Fredlund GG, Tieszen LL (1997a) Calibrating grass phytolith assemblages in climatic terms: application to late Pleistocene assemblages from Kansas and Nebraska. Palaeogeogr Palaeoclimatol Palaeoecol 136:199–211

    Google Scholar 

  • Fredlund GG, Tieszen LL (1997b) Phytolith and carbon isotope evidence for late quaternary vegetation and climate change in the southern Black Hills, South Dakota. Quat Res 47:206–217

    Google Scholar 

  • Gallego L, Distel RA (2004) Phytolith assemblages in grasses native to Central Argentina. Ann Bot 94:865–874

    Google Scholar 

  • Giesecke T, Ammann B, Brande A (2014) Palynological richness and evenness: insights from the taxa accumulation curve. Veg Hist Archaeobot 23(3):217–228

    Google Scholar 

  • Golyeva A (1997) Content and distribution of phytoliths in the main types of soils in Eastern Europe. In: Pinilla A, Juan-Treserras J, Machado JM (eds) Estado Actual de los Estudios de Fitolitos en Suelos y Plantas, Monografías n°4. Centro de Ciencias Medioambientales-CSIC, Madrid, pp 23–32

    Google Scholar 

  • Grave P, Kealhofer L (1999) Assesing bioturbation in archaeological sediments using soil morphology and phytolith analysis. J Archaeol Sci 26:1239–1248

    Google Scholar 

  • Gray JS, Ugland KI, Lambshead J (2004) On species accumulation and species-area curves. Global Ecol and Biogeography 13:567–568

    Google Scholar 

  • Gu Y, Zhao Z, Pearsall DM (2013) Phytolith morphology research on wild and domesticated rice species in East Asia. Quat Int 287:141–148

    Google Scholar 

  • Harvey EL, Fuller DQ (2005) Investigating crop processing using phytolith analysis: the example of rice and millets. J Archaeol Sci 32:739–752

    Google Scholar 

  • Horrocks M, Irwin GJ, McGlone MS, Nichol SL, Williams LJ (2003) Pollen, phytoliths and diatoms in prehistoric coprolites from Kohika, Bay of Plenty, New Zealand. J Archaeol Sci 30:13–20

    Google Scholar 

  • Iriarte J (2003) Assessing the feasibility of identifying maize through the analysis of cross-shaped size and three-dimentional morphology of phytoliths in the grasslands of southeastern South America. J Archaeol Sci 30:1085–1094

    Google Scholar 

  • Iriarte J, Paz EA (2009) Phytolith analysis of selected native plants and modern soils from southeastern Uruguay and its implications for paleoenvironmental and archeological reconstruction. Quat Int 193(1–2):99–123

    Google Scholar 

  • Jones JG (1991) Numerical analysis in archaeobotany. In: van Zeist W, Wasylikowa K, Behre KE (eds) Progress in old world palaeoethnobotany. Balkema, Rotterdam, pp 63–80

    Google Scholar 

  • Kadowaki S, Maher L, Portillo M, Albert RM, Akashi C, Guliyev F, Nishiaki Y (2015) Geoarchaeological and palaeobotanical evidence for prehistoric cereal storage in the southern Caucasus: the Neolithic settlement of Göytepe (mid 8th millennium BP). J Archaeol Sci 53:408–425

    Google Scholar 

  • Karkanas P, Bar-Yosef O, Goldberg P, Weiner S (2000) Diagenesis in prehistoric caves: the use of minerals that form in situ to assess the completeness of the archaeological record. J Archaeol Sci 27:915–929

    Google Scholar 

  • Katz O, Cabanes D, Weiner S, Maeir AM, Boaretto E, Shahack-Gross R (2010) Rapid phytolith extraction for analysis of phytolith concentrations and assemblages during an excavation: an application at Tell es-Safi/Gath, Israel. J Archaeol Sci 37(7):1557–1563

    Google Scholar 

  • Kirchholtes RPJ, Mourik JM, Johnson BR (2015) Phytoliths as indicators of plant community change: a case study of the reconstruction of the historical extent of the oak savanna in the Willamette Valley Oregon, USA. Catena 132:89–96

  • Lancelotti C, Balbo AL, Madella M, Iriarte E, Rojo-Guerra M, Royo JI, Tejedor C, Garrid R, García I, Arcusa H, Pérez Jordà G, Peña-Chocarro L (2014) The missing crop: investigating the use of grasses at Els Trocs, a Neolithic cave site in the Pyrenees (1564 m asl). J Archaeol Sci 42:456–466

    Google Scholar 

  • Lentfer CJ, Boyd WE (1998) A comparison of three methods for the extraction of phytoliths from sediments. J Archaeol Sci 25:1159–1183

    Google Scholar 

  • Lentfer CJ, Boyd WE (1999) An assessment of techniques for the deflocculation and removal of clays from sediments used in phytolith analysis. J Archaeol Sci 26:31–44

    Google Scholar 

  • Lentfer CJ, Boyd WE, Gojak D (1997) Hope farm windmill: phytolith analysis of cereals in early colonial Australia. J Archaeol Sci 24(9):841–856

    Google Scholar 

  • Lepofsky D (2002) Plants and pithouses: archaeobotany and site formation processes at the Keatley Creek village site. In: Mason SLR, Hather JG (eds) Hunter-gatherer archaeobotany: perspectives from the northern temperate zone. Institute of Archaeology - UCL, London, pp 62–73

    Google Scholar 

  • Lepofsky D, Lertzman K (2005) More on sampling for richness and diversity in archaeobiological assemblages. J Ethnobiol 25(2):175–188

    Google Scholar 

  • Lyman R, Ames K (2007) On the use of species-area curves to detect the effects of sample size. J Archaeol Sci 34(12):1985–1990

    Google Scholar 

  • Madella M (2007) The analysis of phytoliths from Braehead archaeological site (Scotland, UK). In: Madella M, Zurro D (eds) Plant, people and places, Recent studies in phytolith analysis. Oxbow Books, Oxford, pp 101–109

    Google Scholar 

  • Madella M, Zurro D (eds) (2007) Plant, people and places—recent studies in phytolith analysis. Oxbow Books, Oxford

    Google Scholar 

  • Madella M, Powers-Jones AH, Jones MK (1998) A simple method of extraction of opal phytoliths from sediments using a non-toxic heavy liquid. J Archaeol Sci 25:801–803

    Google Scholar 

  • Madella M, Jones MK, Goldberg P, Goren Y, Hovers E (2002) The exploitation of plant resources by Neanderthals in Amud Cave (Israel): the evidence from phytolith studies. J Archaeol Sci 29:703–719

    Google Scholar 

  • Madella M, Lancelotti C, Osterrieth M (2013a) Comprehensive perspectives on phytolith studies in Quaternary research. Quat Int 287:1–2

    Google Scholar 

  • Madella M, Lancelotti C, Osterrieth M (eds) (2013b) Comprehensive perspectives on phytolith studies in Quaternary research. Quat Int 287

  • Marinval P (1988) Recherches experimentales sur l’acquisition des donnés en paléocarpologie. Rév d’Archéometrie 10:57–68

    Google Scholar 

  • Mercader J, Runge F, Vrydaghs L, Doutrelepont H, Ewango CEN, Juan-Tresseras J (2000) Phytoliths from archaeological sites in the tropical forest of Ituri, Democratic Republic of Congo. Quat Res 54:102–112

    Google Scholar 

  • Meunier J, Colin F (eds) (2001) Phytoliths: applications in earth sciences and human history. Ed. Balkema, Rotterdam

  • Miller-Rosen A (2001) Phytolith evidence for agro-pastoral economies in the Scythian period of southern Kazakhstan. In: Meunier JD, Colin F (eds) The phytoliths: applications in earth science and human history. CEREGE, Aix en Provence, pp 183–198

    Google Scholar 

  • Moore PD, Webb JA, Collinson ME (1991) Pollen analysis. Blackwell Scientific, London

    Google Scholar 

  • Morikawa CK, Saigusa M (2004) Mineral composition and accumulation of silicon in tissues of blueberry (Vaccinum corymbosus cv. Bluecrop) cuttings. Plant Soil 258:1–8

    Google Scholar 

  • Morris LR, West NE, Baker FA, Van Miegroet H, Ryel RJ (2009) Developing an approach for using the soil phytolith record to infer vegetation and disturbance regime changes over the past 200 years. Quat Int 193:90–98

    Google Scholar 

  • Nelle O, Robin V, Talon B (2013) Pedoanthracology: Analysing soil charcoal to study Holocene palaeoenvironments. Quat Int 289:1–4

  • Novello A, Barboni D (2015) Grass inflorescence phytoliths of useful species and wild cereals from sub-Saharan Africa. J Archaeol Sci 59:10–22

    Google Scholar 

  • Ollendorf AL, Mulholland SC, Rapp G (1988) Phytolith analysis as a means of plant identification: Arundo donax and Phragmites communis. Ann Bot 61:209–214

    Google Scholar 

  • Osterrieth M, Madella M, Zurro D, Alvarez MF (2009) Taphonomical aspects of silica phytoliths in the loess sediments of the Argentinean Pampas. Quat Int 193:70–79

    Google Scholar 

  • Parr JF (2002) A comparison of heavy liquid floatation and microwave digestion techniques for the extraction of fossil phytoliths from sediments. Rev Palaeobot Palynol 120:315–336

    Google Scholar 

  • Parr JF, Carter M (2003) Phytolith and starch analysis of sediment samples from two archaeological sites on Dauar Island, Torres Strait, northeastern Australia. Veg Hist Archaeobot 12:131–141

    Google Scholar 

  • Pearsall DM (2000) Paleoethnobotany: a handbook of procedures, 2nd edn. Academic Press, San Diego

    Google Scholar 

  • Pegg E Jr, Weisstein EW (2013) Margin of error. From MathWorld—a Wolfram web resource. http://mathworld.wolfram.com/MarginofError.html. Accessed 24 Feb 2017

  • Peña-Chocarro L, Zapata L, Iriarte M, González Morales M, Straus LG (2005) The oldest agriculture in northern Atlantic Spain: new evidence from El Mirón Cave (Ramales de la Victoria, Cantabria). J Archaeol Sci 32(4):579–587

    Google Scholar 

  • Persaits G, Gulyás S, Sümegi P, Imre M (2008) Phytolith analysis: environmental reconstruction derived from a Sarmatian kiln used for firing pottery. In: Szabó P, Hédl R (eds) Human nature: studies in historical ecology and environmental history. Institute of Botany of the Czech Academy of Sciences, Pruhonice, pp 116–122

  • Peto Á (2013) Studying modern soil profiles of different landscape zones in Hungary: an attempt to establish a soil-phytolith identification key. Quat Int 287:149–161

    Google Scholar 

  • Pinilla A, Juan-Treserras J, Machado JM (eds) (1997) Estado Actual de los Estudios de Fitolitos en Suelos y Plantas, Monografías n°4. Centro de Ciencias Medioambientales-CSIC, Madrid

  • Piperno DR (1988) Phytolith analysis. An archaeological and geological perspective. Academic Press, San Diego

    Google Scholar 

  • Piperno DR (2006) Phytoliths: a comprehensive guide for archaeologists and paleoecologists. Alta Mira Press, Lanham

    Google Scholar 

  • Piperno DR, Jones J (2003) Paleoecological and archaeological implications of a Late Pleistocene/Early Holocene record of vegetation and climate from the Pacific coastal plain of Panama. Quat Res 59:79–87

    Google Scholar 

  • Piperno DR, Holst I, Wessel-Beaver L, Andres TC (2002) Evidence for the control of phytolith formation in Cucurbita fruits by the hard rind (Hr) genetic locus: archaeological and ecological implications. PNAS 99:10923–10928

    Google Scholar 

  • Portillo M, Albert RM, Henry DO (2009) Domestic activities and spatial distribution in Ain Abū Nukhayla (Wadi Rum, Southern Jordan): the use of phytoliths and spherulites studies. Quat Int 193:174–183

    Google Scholar 

  • Portillo M, Kadowaki S, Nishiaki Y, Albert RM (2014) Early Neolithic household behavior at Tell Seker al-Aheimar (Upper Khabur, Syria): a comparison to ethnoarchaeological study of phytoliths and dung spherulites. J Archaeol Sci 42:107–118

    Google Scholar 

  • Power RC, Rosen AM, Nadel D (2014) The economic and ritual utilization of plants at the Raqefet Cave Natufian site: the evidence from phytoliths. J Anthropol Archaeol 33:49–65

    Google Scholar 

  • Rondelli B, Lancelotti C, Madella M, Pecci A, Balbo AL, Ruiz Pérez J, Inserra F, Gadekar C, Cau MA, Ajithprasad P (2014) Anthropic activity markers and spatial variability: an ethnoarchaeological experiment in a domestic unit of Northern Gujarat (India). J Archaeol Sci 41:482–492

    Google Scholar 

  • Rosindell J, Cornell SJ (2009) Species-area curves, neutral models, and long-distance dispersal. Ecol 90(7):1743–1750

    Google Scholar 

  • Rull V (1987) A note on pollen counting in palaeoecology. Pollen et spores XIXX 4:471–480

    Google Scholar 

  • Runge F (1999) The opal phytolith inventory of soils in central Africa—quantities, shapes, classification, and spectra. Rev Palaeobot Palynol 107:23–53

    Google Scholar 

  • Sangster AG, Hodson MJ, Parry DW, Rees JA (1983) A developmental study of silicification in the trichomes and associated epidermal structures of the inflorescence bracts of the grass Phalaris canariensis L. Ann Bot 52:171–187

    Google Scholar 

  • Scheel-Ybert R (2002) Evaluation of sample reliability in extant and fossil assemblages. In: Thiébault S (ed) Charcoal analysis: methodological approaches, palaeoecological results and wood uses, BAR international series 1063. Archaeopress, Oxford, pp 9–16

    Google Scholar 

  • Shackleton CM, Prins F (1992) Charcoal analysis and the “Principle of least effort”—a conceptual model. J Archaeol Sci 19:631–637

    Google Scholar 

  • Solís-Castillo B, Golyeva A, Sedov S, Solleiro-Rebolledo E, Lopez-Rivera S (2014) Phytoliths, stable carbon isotopes and micromorphology of a buried alluvial soil in Southern Mexico: a polychronous record of environmental change during Middle Holocene. Quat Int. doi:10.1016/j.quaint.2014.06.043

    Google Scholar 

  • Straus LG, González Morales M (2003) El Mirón Cave and the 14C chronology of Cantabrian Spain. Radiocarbon 45:41–58

    Google Scholar 

  • Straus LG, González Morales M, Farrand W, Hubbard W (2001) Sedimentological and stratigraphic observations on El Mirón: a late Quaternary cave site in the Cantabrian Cordillera. Geoarchaeology 16:603–630

    Google Scholar 

  • Straus LG, González Morales M, Fano M, García-Gelabert MP (2002) Last glacial human settlement in eastern Cantabria. J Archaeol Sci 29:1403–1414

    Google Scholar 

  • Strömberg CAE (2002) The origin and spread of grass-dominated ecosystems in the late Tertiary of North America: preliminary results concerning the evolution of hypsodonty. Palaeogeogr Palaeoclimatol Palaeoecol 177:59–75

    Google Scholar 

  • Strömberg CAE (2004) Using phytolith assemblages to reconstruct the origin and spread of grass-dominated habitats in the great plains of North America during the late Eocene to early Miocene. Palaeogeogr Palaeoclimatol Palaeoecol 207:239–275

    Google Scholar 

  • Strömberg CAE (2009) Methodological concerns for analysis of phytolith assemblages: does count size matter? Quat Int 193:124–140

    Google Scholar 

  • Thorn VC (2004) Phytoliths from subantarctic Campbell Island: plant production and soil surface spectra. Rev Palaeobot Palynol 132:37–59

    Google Scholar 

  • Trombold CD, Israde-Alcantara I (2005) Paleoenvironment and plant cultivation on terraces at La Quemada, Zacatecas, Mexico: the pollen, phytolith and diatom evidence. J Archaeol Sci 32:341–353

    Google Scholar 

  • Tsartsidou G, Lev-Yadun S, Efstratiou N, Weiner S (2008) Ethnoarchaeological study of phytolith assemblages from an agro-pastoral village in Northern Greece (Sarakini): development and application of a phytolith difference index. J Archaeol Sci 35:600–613

    Google Scholar 

  • Twiss PC (1992) Predicted world distribution of C3 and C4 grass phytoliths. In: Rapp Jr G, Mulholland S (eds) Phytolith systematics: emerging issues, Advances in Archaeological and Museum science, vol 1. Plenum Press, New York, pp 113–128

    Google Scholar 

  • Van der Veen M (1985) Carbonised seeds, sample size and on-site sampling. In: Fieller NRJ, Gilbertson DD, Ralph NGA (eds) Palaeoenvironmental investigations: research design, methods and data analysis. British archaeological reports, International Series 258. Archaeopress, Oxford, pp 166–178

    Google Scholar 

  • Wallis LA (2001) Environmental history of northwest Australia based on phytolith analysis at Carpenter’s Gap 1. Quat Int 82-85:103–117

    Google Scholar 

  • Wallis L (2003) An overview of leaf phytolith production patterns in selected northwest Australian flora. Rev Palaeobot Palynol 125:201–248

    Google Scholar 

  • Watling J, Iriarte J (2013) Phytoliths from the coastal savannas of French Guiana. Quat Int 287:162–180

    Google Scholar 

  • Whang SS, Kim K, Hess WM (1998) Variation of silica bodies in leaf epidermal long cells within and among seventeen species of Oryza (Poaceae). Am J Bot 85:461–466

    Google Scholar 

  • Wright PJ (2005) Flotation samples and some paleoethnobotanical implications. J Archaeol Sci 32(1):19–26

    Google Scholar 

  • Wright PJ (2010) Methodological issues in paleoethnobotany: a consideration of issues, methods, and cases. In: Van Derwarker AM, Peres TM (eds) Integrating zooarchaeology and paleoethnobotany: a consideration of issues, methods, and cases. Springer, Verlag, pp 37–64

    Google Scholar 

  • Zhao Z, Pearsall DM (1998) Experiments for improving phytolith extraction from soils. J Archaeol Sci 25:587–598

    Google Scholar 

  • Zillio T, He F (2010) Inferring species abundance distribution across spatial scales. Oikos 119(1):71–80

    Google Scholar 

  • Zucol AF (1996) Microfitolitos de las Poaceae argentinas: I. Microfitolitos foliares de algunas especies del genero Stipa (stipeae: Arundinoideae), de la provincia de Entre Ríos. Darwiniana 34:151–172

    Google Scholar 

  • Zucol AF (1998) Microfitolitos de las Poaceae argentinas: II. Microfitolitos foliares de algunas especies del genero Panicum (Poaceae, Paniceae) de la provincia de Entre Ríos. Darwiniana 36:29–50

    Google Scholar 

  • Zucol AF, Osterrieth M (2002) Técnicas de preparación de muestras sedimentarias para la extracción de fitolitos. Ameghiniana 39(3):379–382

    Google Scholar 

  • Zurro D (2006) El análisis de fitolitos y su papel en el estudio del consumo de recursos vegetales en la prehistoria: bases para una propuesta metodológica materialista. TP 63:35–54

    Google Scholar 

  • Zurro D (2011) Ni carne ni pescado (consumo de recursos vegetales en la Prehistoria): Análisis de la variabilidad de los conjuntos fitolitológicos en contextos cazadores-recolectores. UAB Press (http://hdl.handle.net/10803/32145)

  • Zurro D, Madella M, Briz I, Vila A (2009) Variability of the phytolith record in fisher-hunter-gatherer sites: an example from the Yamana society (Beagle Channel, Tierra del Fuego, Argentina). Quat Int 193:184–191

    Google Scholar 

  • Zurro D, García-Granero JJ, Lancelotti C, Madella M (2016) Directions in current and future phytolith research. J Archaeol Sci 68:112–117

    Google Scholar 

Download references

Acknowledgements

The author would like to acknowledge the directors of both sites El Mirón (L. Straus and M. González Morales) and La Bauma del Serrat del Pont (M. Saña and G. Alcalde) for their essential collaboration as well as to J. Elvira (Institute of Soil Science, Spanish National Research Council ICTJA-CSIC) for running the X-ray diffraction analyses. The author would also like to acknowledge the following colleagues: M. Madella and J.J. García-Granero for their help and comments, C. Lancelotti, J. Alcaina and E. Bortolini for their assistance with R and last but not least, the reviewers for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debora Zurro.

Electronic supplementary material

ESM 1

(EPS 366 kb)

ESM 2

(EPS 374 kb)

ESM 3

(EPS 333 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zurro, D. One, two, three phytoliths: assessing the minimum phytolith sum for archaeological studies. Archaeol Anthropol Sci 10, 1673–1691 (2018). https://doi.org/10.1007/s12520-017-0479-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12520-017-0479-4

Keywords

Navigation